The Fantastic Drives

The Fantastic Drives are uncommonly encountered interstellar drives available only as artifacts or at extremely high Tech Levels.

DRIVE TONNAGE

DRIVE TONN											
Drive Rating	J	н	S	Ν							
Letter EP	J-Drive	H-Drive	S-Drive	N-Drive							
A 100	10	1	10	30							
B 200	15	2	20	60							
C 300 D 400	20	3 4	30 40	90 120							
E 500	400 25 500 30		40 50	120							
F 600			60	180							
G 700			70	210							
H 800	45	8	80	240							
J 900	50	9	90	270							
K 1000	55	10	100	300							
L 1100	60 65	11	110	330							
M 1200 N 1300	65 70	12 13	120 130	360 390							
P 1400	75	13	140	420							
Q 1500	80	15	150	450							
R 1600	85	16	160	480							
S 1700	90	17	170	510							
T 1800	95	18	180	540							
U 1900 V 2000	100	19	190	570							
V 2000 W 2100	105 110	20 21	200 210	600 630							
X 2200	115	22	220	660							
Y 2300	120	23	230	690							
Z 2400	125	24	240	720							
N2 2600	140	26	260	750							
P2 2800	150	28	280	780							
Q2 3000 R2 3200	160	30 32	300	810 840							
R2 3200 S2 3400	170 180	34	320 340	870							
T2 3600	190	36	360	900							
U2 3800	200	38	380	930							
V2 4000	210	40	400	960							
W2 4200	220	42	420	990							
X2 4400	230	44	440	1020							
Y2 4600 Z2 4800	240 250	46	460	1050							
Z2 4800	250	48	480	1100							
DRIVE TL				COSTS							
TL J H	S N .	TL J H	SN	Drive MCr							
91-		21	- 7	Jump 1.0							
10 1 -		22		Hop 5.0							
11 2 - 12 3 -	•	23 - 1 24 - 2	- 8	Skip 5.0 NAFAL 1.0							
13 4 -		25 - 3	- 9	Per Ton							
14 5 -		26 - 4	1 -								
15 6 -		27 - 5	2 -								
16 6 -		28 - 6	3 -								
17 7 -	•	29 - 7	4 -								
18 7 -		30 - 8	5 -								
19 8 - 20 8 -		31 - 9 32	6 - 7 -								
20 0	I	-									
			ть								

THE FANTASTIC DRIVES

Any of the Drives shown here must be supported by a Power Plant with Drive Potential at least equal to this Drive's Potential.

Jump Drive (shown for comparison). Jumps are measured in parsecs; one Jump (regardless of distance) requires one week.

The Mythical "Hop" Drive. Hops are measured in tens of parsecs; the ship Hops exactly that distance; one Hop takes about a day. Fuel usage is relatively small.

The Rumored "Skip" Drive. Skips are measured in hundreds of parsecs, but the final distance is inexact. One Skip (regardless of distance) requires several hours. Fuel usage is negligible. A Skip contaminates Jump Space in its originating system, and is subject to SkipScatter.

NAFAL. The **Not As Fast As Light** interstellar drive. The drive accelerates the ship perpendicular to a gravity source and decelerates the ship perpendicular to the destination gravity source. Acceleration is in Gs.

FUEL REQUIREMENTS

Drives require fuel to provide energy. Fuel is Hydrogen, stored under pressure and liquefied, fed from fuel tanks to the appropriate drive.

Hop Drive (per Hop). A Hop Drive requires 1% of Hull Tonnage per Hop number (subject to PPlant Overclock) per use. A Hop Drive can perform ONLY a Hop equal to its Potential.

Skip Drive (per Skip). A Skip Drive requires 1% of Hull Tonnage per Skip number (subject to PPlant Overclock) per use. A Skip Drive can perform ONLY a Skip equal to its Potential and is subject to Skip Scatter (1 parsec in a random direction from the destination hex).

NAFAL (per month). A NAFAL Drive requires 1% of Hull Tonnage per G number (subject to PPlant Overclock).

Stage		TL	QREBS	OC	Tons	Cost	
	Ex	Experimental*	- 3	Full	50	x3	x10
	Pr	Prototype**	- 2	3 of 5	80	x2	x3
	Er	Early	- 1	1 of 5	90		x2
-		(Standard)	+0		100		
	Im	Improved	+1	+1 of 5	110		
	Ad	Advanced	+2	+3 of 5	120		

OC= Overclock (for Power Plants only; ignore Tons).

OVERCLOCK

STAGE FEFECTS

Standard P-Plant tonnage is based on Overclock= 100.

True P-Plant tons = Power Plant Tons / (OC/100) True **Hop** Fuel Required= Fuel / (OC/100) True **Skip** Fuel Required= Fuel / (OC/100)

