

NIALL C. SHAPERO STEVEN S. CROMPTON

We at Alderson Yards would like to thank you for the interest you have shown in our spacecraft. This catalogue should give you a good idea of what we have to offer and give a general idea of the ship types and configurations available. Please contact your local Alderson representative with any questions or to arrange to view actual craft or detailed models. Variations on our standard configurations can be arranged and such changes can be worked out with your local representative.

We feel certain that the quality and care of all Alderson products, as well as

the careful planning involved in all ship designs produced by Alderson will make the time you spend evaluating these ship types both enjoyable and rewarding. The greatest care is always taken in ship design here at Alderson, whether in terms of powerplant or cabin arrangements for the comfort of the crew and passengers. Each ship is carefully designed with a specific job in mind and is ideally suited to carry out that job reliably and efficiently, at a reasonable price in both initial capital outlay and upkeep costs. Quality in design concepts, components, and construction techniques make possible ships of superior durability and reliability. Time spent now in careful evaluation of your needs will be well spent in allowing you to make the best decision for your present and furure needs – Alderson Yards.

We strive to offer the most functional designs with features for the comfort of the captain and crew of any ship we build. This quality and reliability must be your first concern. Yet, price is not always indicative of quality and Alderson has maintained a price structure that is competitive with any shipyard in the Hegemony. Alderson offers years of experience, an unquestionable reputation, quality components and construction, carefully thought out designs for specific functions, and high resale value at a price that will fit the budgets of any corporate manager looking to build or expand a fleet or for the individual buyer looking for luxury transportation.

Please feel free to contact us again with any specific requests for information. We feel certain that our representative in your system can assist you in making those minor modifications that will make your Alderson ship the perfect ship

Sincerely,

TOYJ

Yakov Kreeger Hegemonic Sales Manager

THE ALDERSON YARDS A BRIEF HISTORY

Alderson Yards can trace its existance back to pre-Collapse times on Luna in Sol System where it served as the backbone of the first Human expansion, Alderson Yards (then known as Alderson Naval Engineering Corporation) moved its central offices out-system during the latter part of the third century, and disassociated itself (as much as possible) from the monster that Terra Imperial was fast becoming.

BRIEF HISTORY

During the Outworlds' rebellion against the tyrannical Terran Empire (319-331 A.A.), Alderson Yards sided with the rebels and all save three of the Alderson Corporation's shipyards were seized by Imperial forces following the failure of the rebellion. Those remaining yards were incapable of building ships larger than 5000 metric tons, and lacked the necessary facilities for construction of the heavier weapons systems needed by military craft; accordingly, they were spared by the 'merciful' government.

Only one new shipyard was built before contact was made with the Hegemony. With the contact, the Imperial economy converted to a war footing, and Alderson Shipyards were shut down by Imperial edict 'as an economy measure, for the duration of the emergency.' The 'emergency' lasted until the end of the Empire in the flames of the Second Hegemony-Empire War. But the closure had one favorable consequence: idled for decades, the newest of the shipyards was by-pessed by Hegemonic Enforcer squadrons as an unimportant non-military target.

That one shipyard, forgotten by both Imperial and Hegemonic forces, survived the Second Hegemony-Empire War as well as the Collapse that followed. And from that one shipyard grew the giant that is today the Alderson Yards, a corporation respected throughout the Commonality of Man for honesty, integrity, and performance.

Buy your next ship from the Alderson Yards, and help support the First PEACEFUL Human Expansion.

Peregrine Class Speedster (400 tons)

Item	Mass (Metric Tons)	Energy Cost (units/hour)	Cost (1k = 1000)
Hull Material	40.0	0.000	40.00k
LS-3	2.9	0.003	60.00k
LS-3	2.9	0.003	60.00k
P-1.712	1.2	generates 1284	1712.00k
P-1.712	1.2	generates 1284	1712.00k
J-10	316.3	1000.000	7905.70k
CG-64.8(99.5% n)	2.0	64.800	7776.00k
CG-64.8(99.5% n)	2.0	64.800	7776.00k
Computer Grade 30	0.1	0.001	300.00k
Computer Grade 30		0.001	300.00k
C-0.1667	0.6	125.000	166.70k
(range = 5 light-	years)		
Rd-10 transceiver	0.1	0.001	5.00k
Active Sensor	1.0	0.050	50.00k
(G = 1, R = 0.5)			
Airlock	2.0	0.000	10.00k
Bridge (2 x cabin)	4.0	0.000	4.00k
Standard Cabin	2.0	0.000	2.00k
Standard Cabin	2.0	0.000	2.00k
Fuel (5000 hours)	0.5	0.000	500.00k
the second star and the second star and	William Annual States Annual States		

Total Mass = 380.5 tons. Total Cost = 28,380,700 smu. Total Cargo Capacity = 19.1 metric tons. FTL cruising speed (fully loaded) of 50 light-years per hour, maximum normal space acceleration (again, fully loaded) of 324gs neutralized internally to 1.62gs. Life support on board will maintain 240 SIZ points in comfort.

When you have to leave in a hurry, when hours are important, choose *the Peregrine*. When you can't afford to spend days chugging along through normal space, the Peregrine's 324g boost can reduce trip times by a factor of 18 (reducing travel time on 1 AU trips from 68 hours 39 minutes to 3 hours 49 minutes). Why be satisfied with poorer performance when minutes count?

But even the best of smugglers must sometimes dump cargo – and the Peregrine class speedster has the added computer power to take advantage of the reduced ship mass. The burst speed of a Peregrine is 82 light-years per hour without cargo; her acceleration is 359gs (neutralized internally to 1.8gs). Even with a full cargo load, the Peregriné s excess power and computer capacity lets her fly rings around virtually all non-military craft; she can attain speeds of 80 light-years per hour (though this 60% overspeed reduces MTBF on her engines from 4000+ hours to 62+ hours).

Sale or operation of Peregrine class speedsters is limited to regions under the authority of either the Commonality of Man or another sub-government that treats smuggling as a 'game'. As possession of speedsters or their operation may be regarded as prima facie evidence of criminal activities in some regions, please consult your local system government or Alderson Yards legal department before purchasing a ship of this class.

ADMOTOR

R

E

т

S

D

P

S

E

E

	Merlin Class Spe	edster (600 tons)		
Item	Mass (Metric Tons)	Energy Cost (units/hour)	Cost 1k = 1000)	
Hull Material	60.0	0.000	60.00k	
LS-3.6	3.1	0.004	72.00k	
LS-3.6	3.1	0.004	72.00k	
P-5.1	1.8	generates 3825	5100.00k	
P-5.1	1.8	generates 3825	5100.00k	
	426.1	1815.000	19331.03k	
J-18.15		97.200	10603.64k	
CG-97.2 (99.45%		97.200	10603.64k	
CG-97.2 (99.45%		0.001	360.00k	
Computer Grade 3		0.001	360.00k	
Computer Grade 3		125.000	166.70k	
C-0.1667 (range = 5 light	0.6 t-vears)	125.000	100.70	
Rd-60 transceiver		0.001	30.00k	
Active Sensor	1.0	0.100	100.00k	
(G = 1, R = 1)	4			
2 Airlocks	4.0	0.000	20.00k	
Bridge (4 x cabin) 8.0	0.000	8.00k	
8 Standard Cabins		0.000	16.00k	
Dining Cabin (Double Cabir	4.0	0.000	4.00k	
Captairí s Cabin (Double cabin	4.0	0.000	4.00k	
Fuel (2000 hrs.)	0.4	0.000	400.00k	
Flight Recorder	0.1	0.000	Gov. supplied	
Flight Recorder	0.1	0.000	Gov. supplied	

S

P

E

E

D

S

Т

E

R

Total Mass = 538.4 tons. Total Cost = 52,411,010 smu. Total Cargo Capacity = 61.6 metric tons. FTL cruising speed (fully loaded) of 55 light-years per hour, maximum normal space acceleration (again, fully loaded) of 324gs neutralized internally to 1.782gs. Life support on board will maintain 288 SIZ points in comfort (or up to 240 SIZ points in comfort and safety, per Hegemonic regulations).

When time is of the essence, and your cargo is heavy, or you have several passengers to transport, go with *the Merlin*. Like the smaller Peregrine speedsters, the Merlin's 324 boost reduces trip times in normal space by a factor of 18 (reducing travel time on 1 AU trips from 68 hours 39 minutes to 3 hours 49 minutes). Why be satisfied with poorer performance when minutes count?

When circumstances beyond your control force you to dump your cargo, you know that the Merlin's excess computer capacity will allow you to use those two P-5.1 power plants to their fullest. The burst speed of the Merlin with an empty cargo hold is 118 light-years per hour; her acceleration in normal space with cargo dumped is 519gs (neutralized internally to 3.2505gs). Even with a full cargo load, the Merlin still flashes through jump space at speeds of up to 112 light-years per hour (though such overspeeds will result in serious reduction of engine MTBF). And with speeds like these, even high speed military craft will be hard pressed to overtake the Merlin.

Sale or operation of Merlin class speedsters is limited to regions under the authority of either the Commonality of Man or another subgovernment that treats smuggling as a 'game'. As possession or the operation of speedsters of this class may be regarded as prima facie evidence of criminal activities in some regions, please consult your local system government or Alderson Yards legal department before purchasing a ship of this class.

30.00k 0.001 Rd-60 transceiver 0.1 100.00k 0.100 Active Sensor 1.0 (G = 1, R = 1)20.00k 4.0 0.000 2 Airlocks 8,00k 0.000 Bridge (4 x cabin) 8.0 16.00k 0.000 16.0 8 Standard Cabins 0.000 4.00k 4.0 Dining Cabin (Double cabin) 4.00k 0.000 Captain's Cabin 4.0 (Double cabin) 400.00k 0.000 Fuel (2000 hrs.) 0.4 Gov. supplied 0.000 0.1 Flight Recorder Gov. supplied 0.000 Flight Recorder 0.1

A

S

Total Mass = 965.4 tons. Total Cost = 56,021,720 smu. Total Cargo Capacity = 34.6 metric tons. FTL cruising speed (fully loaded) of 45 light-years per hour, maximum normal space acceleration (again, fully loaded) of 225gs neutralized internally to 1.575gs. Life support on board will maintain 480 SIZ points in comfort (or up to 400 SIZ points in comfort and safety, per Hegemonic regulations).

The Tiercel is for the enterprising entrepeneur with a desire not merely for speed but for authority as well. The Tiercel's two A-0.25 TC batteries provide ample firepower to protect her against seizure in deep space; her four anti-personnel guns provide like protection on the ground. And though slower than the Peregrine and Merlin speedsters, the Tiercel's 225g boost still reduces trip times in normal space by a factor of 15 (reducing travel time on 1 AU trips from 68 hours 39 minutes to 4 hours 35 minutes); that all important 'window of vulnerability' as you seek the safety of jump space is still measured in hours, not days.

Inevitably, there are those times when you will be forced by circumstances to dump your cargo. But if you have a Tiercel, your excess computer capacity will allow you to use your ship's power plants to their fullest. The burst speed of the Tiercel with an empty cargo hold is 95 light-years per hour; her acceleration in normal space with cargo dumped is 233gs (neutralized internally to a far more comfortable 1.631gs). Even with a full cargo load, the Tiercel still flashes through jump space at speeds of up to 90 light-years per hour (though such overspeeds will result in serious reduction of engine MTBF). At such speeds only high speed military craft, or another of Alderson Yard's Speedsters will be able to catch the Tiercel; and only another Tiercel can be a threat to the heavily armed and armored Tiercel.

Sale or operation of Tiercel class speedsters is limited to regions under the authority of either the Commonality of Man or another sub-government that treats smuggling as a 'gamé'. As possession or operation of speedsters of this class may be regarded as prima facie evidence of criminal activities in some regions, please consult your local system government or Alderson Yards legal department before purchasing a ship of this class. CARGO BAY: 34.6 TONS

BRIDGE

CAPTAIN'S

CABIN

CABIN

CABIN

CABIN

CABIN

CABIN

AIRLOCK |

DINING

CABIN

CABIN

CABIN

D

E

Т

AIRLOCK

S

DECK 8

	1.22日の時間(1)21		oms Ship (3800 tons					
	Item	Mass (Metric Tons)	Energy Cost (units/hour)	Cost (1k = 1000)				-
	Hull Material	400.0	0.000	400.00k		\hat{a}^{*} , \hat{a}^{*} , \hat{a}^{*}		
	TC Battery (A-2 R-2)	800.0	4000.000	4,000.00k		C. Carlos		are -
	TC Battery	800.0	4000.000	4,000.00k		$-\pi \hat{U} \hat{V}^{\dagger}$	(1,2,1)	
	(A-2 R-2) D-4 Shield	1600.0	16000.000	16,000.00k				343
++++	T-10 Mind Shield	1.0	0.100	100.00k	ЕСК З			
	AP Guns (10)	2.0	0.000	150.00k				和新
	LS-1	2.0	0.001	20.00k 20.00k				
	LS-1 LS-1	2.0 2.0	0.001	20.00k				
	P-27	3.0	generates20250	27,000.00k				353
	P-27	3.0	genetates20250	27,000.00k				
	J-0.64	80.0	64.000	128.00k				
	CG-506.67 (99.75% neut) CG-506.67	2.0 2.0	506.670 506.670	121,600.80k				
++++	(99.75% neut)							
	CG-506.67 (99.75% neut)	2.0	506.670	121,600.80k			F	A
	Computer Grade 2	5 0.1	0.001	250.00k			F	$ \rightarrow $
	Computer Grade 2		0.001	250.00k				100
+++++	C-0.010667 (range = 2 light	0.3	8.000	10.67k				
+++++	Rd-60 transceiver		0.001	30.00k				
	Active Sensor	1.0	0.100	100.00k			Cic Ta	
	(G = 1, R = 1.0 Passive Sensor (Grade 1))) 10.0	0.100	50.00k				
	Bridge (2 x cabin)		0.000	4.00k		46/S. 1.		
	4 Standard Cabins		0.000	10.00k				
	Brig (2 x cabin)	4.0 10.0	0.000 0.000	4.00k 1,000.00k		19.10	5.57.65	
	Sick Bay 2 Airlocks	4.0	0.000	20.00k				
	2 Cargo Airlocks	8.0	0.000	40.00k		100	-	
	Fuel (1000 hours)	2.6	0.000	2,600.00k			5.5	
							£158 72	
DEC	К 4					543 (A. 1	12.2	
							748° X204 X.	3
							++++	
							++++	
				Sand States of States	(
						7		
								<u>a) a</u>
							++++	

S

DECK 1 G

Item	Mass	Energy Cost	Cost
	(Metric Tons)	(units/hour)	(1k = 100)
Hull Material	62.5	0.000	62.50k
LS-3	2.9	0.003	60.00k
LS-3	2.9	0.003	60.00k
LS-3	2.9	0.003	60.00k
P-0.06	0.8	generates 45	60.00k
P-0.06	0.8	generates 45	60.00k
J-0.625	79.1	62.500	123.53k
CG-5 (93.75% neut) 2.0	5.000	48.00k
CG-5 (93.75% neut) 2.0	5.000	48.00k
Computer Grade 8	0.1	0.001	80.00k
Computer Grade 8	0.1	0.001	80.00k
C-0.01067	0.3	8.000	10.67k
(range = 2 light-	years)		
Rd-10 transceiver	0.1	0.001	5.00k
Active Sensor	1.0	0.050	50.00k
(G = 1, R = 0.5)			and the second
Airlock	2.0	0.000	10.00k
4 Cargo airlocks	16.0	0.000	80.00k
Bridge (2 x cabin)	4.0	0.000	4.00k
Mess (2 x cabin)	4.0	0.000	4.00k
Captain's Cabin	4.0	0.000	4.00k
Crew Cabins (7)	14.0	0.000	14.00k
Fuel (12,500 hrs.)	0.1	0.000	100.00k

Total Mass = 201.6 tons. Total Cost = 1,023,700 smu. Total Cargo Capacity = 423.4 metric tons. FTL cruising speed (fully loaded) of 10 light-years per hour, maximum normal space acceleration (again, fully loaded) of 16gs neutralized internally to 1g. The maximum cruising speed in jump space (no cargo) is 17.6 light-years per hour, the maximum safe acceleration in normal space (again, no cargo) is 49.6gs (neutralized internally to 3.1gs). Life support on board will maintain 360 SIZ points in comfort.

The lennaco is a larger capacity version of the O'Reilly and was designed as the next step up in fleet growth for the successful cargo line. The normal space acceleration is less than that of the O'Reilly class, but still great enough to reduce normal space flight times by a factor of four. The cargo capacity of an lennaco class ship is nearly twice that of an O'Reilly class freighter, the burst speed is 10% greater and the cost is only 18% greater. When your company's cargo fleet is undergoing second generation growth, think of the lennaco, and buy the starfreighter with proven quality.

R

DECK 2

= 1000)

E

G

н

Т

R

E

	П			R							
	CLA	s s	C	AR	G	0		s f		P	
									111		
ZH											
5											
DH											
			~	• •							
			62BD		H						
).	(C) **			AN IPERMAN	SALE REAL		
		6					制				
		2000	7/1						to till /	1	
}		17	1.1					21A		1	
	\sim	A-AI							9		
	NO.	H.			H						
1	4.76	2 Col	*		Ŧ						
			2			<u> </u>					
		h. T									KI
										X	
										Ń	
1	++++++++									N. Contraction	
								- IV			
		Arris Class Cargo	Ship (250 tons)						J/		
			Ship (250 tons)								
Iten		Arris Class Cargo Mass (Metric Tons)	Energy Cost (units/hour)	Cost (1k = 1000)					V		
- Hul	n I Material	Mass (Metric Tons) 25.0	Energy Cost (units/hour) 0.000	(1k = 1000) 25.00k					XXX		
Hul LS-2	n I Material 2 2	Mass (Metric Tons) 25.0 2.6 2.6	Energy Cost (units/hour) 0.000 0.002 0.002	(1k = 1000) 25.00k 40.00k 40.00k					XXX/		
Hul	n 1 Material 2 2 25 25	Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5	(1k = 1000) 25.00k 40.00k 40.00k 250.00k 250.00k							
Hull LS-: LS-: P-0. P-0. J-2.	n 2 2 25 25 25 25	Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5 generates 187.5 225.000	(1k = 1000) 25.00k 40.00k 40.00k 250.00k 250.00k 843.75k					411		
Hull LS-: P-0. P-0. J-2. CG- CG-	n 2 2 25 25 25 25 25 28 (95% neut) 28 (95% neut)	Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0 2.0 2.0	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5" generates 187.5 225.000 28.000 28.000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k 336.00k							
Hull LS- P-0. P-0. J-2. CG- CG- CG- CG-	n 2 2 25 25 25 25 28 (95% neut) 28 (95% neut) nputer Grade 20	Mass (Metric Tons) 25.0 2.6 2.6 0.7 150.0 2.0 2.0 2.0 0.1	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5 generates 187.5 225.000 28.000 28.000 0.001	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k							
Hull LS-1 P-0, P-0, J-2, CG- CG- Con Con Con	n 2 2 25 25 25 28 (95% neut) 28 (95% neut) 28 (95% neut) nputer Grade 20 nputer Grade 20 .010667	Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0 2.0 2.0 2.0 0.1 0.1 0.1 0.3	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5" generates 187.5 225.000 28.000 28.000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 843.75k 336.00k 336.00k 200.00k							
Hull LS-1 P-0. P-0. J-2. CG- CG- CG- Con Con Con Rd-	1 Material 2 2 25 25 25 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) nputer Grade 20 0,010667 (range = 2 light-y 10 Transceiver	Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0 2.0 2.0 2.0 0.1 0.1 0.3 (rears)	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5 225.000 28.000 28.000 28.000 0.001 8.000 0.001	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 843.75k 336.00k 336.00k 200.00k 200.00k 10.67k 5.00k							
Hull LS- P-0. P-0. J-2. CG- CG- Con Con Con Con Rd- Rd-	1 Material 2 25 25 25 28 (95% neut) 28 (95% neut) nputer Grade 20 nputer Grade 20 010667 (range = 2 light-y 10 Transceiver ive Sensor	Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0 2.0 2.0 2.0 0.1 0.1 0.3 (rears)	Energy Cost (units/hour) 0.000 0.002 generates 187.5 generates 187.5 225.000 28.000 28.000 28.000 0.001 0.001 8.000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k 336.00k 200.00k 200.00k 10.67k							
Hull LS- P-0. P-0. J-2. CG- CG- Con Con Con Con Rd- Rd-	1 Material 2 25 25 28 (95% neut) 28 (95% neut) 28 (95% neut) nputer Grade 20 nputer Grade 20 0.010667 (range = 2 light-y 10 Transceiver ive Sensor (G = 1, R = 0.5) ock	Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0 2.0 2.0 0.1 0.1 0.1 0.3 (ears) 0.1 1.0 2.0	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5 225.000 28.000 28.000 28.000 0.001 0.001 8.000 0.001 0.050 0.000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k 336.00k 336.00k 200.00k 200.00k 10.67k 5.00k 50.00k							
Hull LS- P-0. P-0. J-2. CG- Con Con Con Con Con Act Airl	Naterial 2 25 25 25 28 (95% neut) 28 (95% neut) nputer Grade 20 nputer Grade 20 0.010667 (range = 2 light-y 10 Transceiver ive Sensor (G = 1, R = 0.5) ock go Coupler	Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0 2.0 2.0 0.1 0.1 0.1 0.3 (ears) 0.1 1.0 2.0 2.0 2.0 2.0 0.1 0.1 0.3 (ears) 0.1 1.0	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5 generates 187.5 225.000 28.000 28.000 0.001 0.001 0.001 0.050 0.000 0.000 0.000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k 336.00k 200.00k 200.00k 10.67k 5.00k 50.00k							
Hull LS- P-0. P-0. J-2. CG- Con Con Con Con Con Con Con Con Con Con	n I Material 2 25 25 25 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) nputer Grade 20 0,010667 (range = 2 light-y 10 Transceiver ive Sensor (G = 1, R = 0.5) ock go Coupler lge (2 x cabin) andard Cabins	Mass (Metric Tons) 25.0 2.6 2.6 2.6 0.7 0.7 150.0 2.0 2.0 2.0 0.1 0.1 0.3 (rears) 0.1 1.0 2.0 25.0 4.0 16.0	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5 generates 187.5 225.000 28.000 28.000 28.000 0.001 0.001 8.000 0.001 0.050 0.000 0.000 0.000 0.000 0.000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 843.75k 336.00k 200.00k 200.00k 200.00k 50.00k 50.00k 10.00k 50.00k 4.00k							
Hull LS- P-0. P-0. J-2. CG- CG- Con Con Con Con Con Con Con Con Con Con	n I Material 2 25 25 25 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) nputer Grade 20 0,010667 (range = 2 light-y 10 Transceiver ive Sensor (G = 1, R = 0.5) ock go Coupler Ige (2 x cabin) andard Cabins	Mass (Metric Tons) 25.0 2.6 2.6 0.7 150.0 2.0 2.0 0.1 0.1 0.1 0.3 vears) 0.1 1.0 2.0 2.0 2.0 2.0 0.1 1.0 2.0 2.0 2.0 0.1 1.0 2.0 2.0 2.0 0.1 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5 generates 187.5 225.000 28.000 28.000 28.000 0.001 0.001 0.001 0.050 0.000 0.000 0.000 0.000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k 336.00k 200.00k 200.00k 10.67k 5.00k 50.00k 10.00k 50.00k 4.00k							
Hull LS- P-0. P-0. J-2. CG- CG- Con Con Con Con Con Con Con Con Rd- Act Act Airl Car Bric 8 St Fue	I Material 2 2 25 25 25 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 20 (20 (20 (20 (20 (20 (20 (20 (20 (20 (Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0 2.0 2.0 0.1 0.1 0.1 0.3 (ears) 0.1 1.0 2.0 25.0 4.0 16.0 0.2 4.4 tons. Total	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5 generates 187.5 225.000 28.000 28.000 28.000 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k 336.00k 200.00k 200.00k 10.67k 5.00k 50.00k 10.00k 50.00k 10.00k 200.00k 200.00k smu. Total Carg							
Hull LS-: LS-: P-0. P-0. J-2. CG- CG- Con Con Con Con Con Con Con Con Con Con	I Material 2 25 25 25 28 (95% neut) 28 (95% neut) 20 (20 (20 (20 (20 (20 (20 (20 (20 (20 (Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0 2.0 2.0 0.1 0.1 0.1 0.3 (ears) 0.1 1.0 2.0 25.0 4.0 16.0 0.2 4.4 tons. Total etric tons. FTL	Energy Cost (units/hour) 0.000 0.002 generates 187.5 generates 187.5 225.000 28.000 28.000 28.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k 336.00k 200.00k 200.00k 10.67k 5.00k 50.00k 10.00k 50.00k 4.00k 16.00k 200.00k smu. Total Carg ully loaded) is 3	30						
Hull LS- P-0. P-0. J-2. CG- Con Con Con Con Con Con Con Con Con Con	Material 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Mass (Metric Tons) 25.0 2.6 2.6 0.7 0.7 150.0 2.0 2.0 0.1 0.1 0.1 0.1 0.3 (ears) 0.1 1.0 2.0 25.0 4.0 16.0 0.2 4.4 tons. Total etric tons. FTL . Maximum nor neutralized inte	Energy Cost (units/hour) 0.000 0.002 0.002 generates 187.5 225.000 28.000 28.000 28.000 0.001 0.001 0.001 0.000 0.001 0.050 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 250.00k 336.00k 336.00k 200.00k 200.00k 10.67k 5.00k 50.00k 10.00k 50.00k 10.00k 50.00k 4.00k 16.00k 200.00k smu. Total Cargully loaded) is 3 ation (again, full Life support o	ly h						
Hull LS- P-0. P-0. P-0. J-2. CG- CG- Con Con Con Con Con Con Con Con Con Con	I Material 2 2 25 25 25 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 20 (00067 (range = 2 light-y 10 Transceiver ive Sensor (G = 1, R = 0.5) ock go Coupler dge (2 x cabin) andard Cabins I (6650 hrs.) Total Mess = 23 acity = 15.6 met t-years per hour ded) is 224 gs, rd will maintain Arris class craft	Mass (Metric Tons) 25.0 2.6 2.6 2.6 0.7 0.7 150.0 2.0 2.0 2.0 0.1 0.1 0.3 (rears) 0.1 1.0 2.0 25.0 4.0 16.0 0.2 4.4 tons. Total etric tons. FTL . Maximum nor neutralized inte 160 SIZ points t is generally do	Energy Cost (units/hour) 0.000 0.002 generates 187.5 generates 187.5 225.000 28.000 28.000 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k 200.00k 200.00k 200.00k 10.67k 5.00k 50.00k 10.00k 50.00k 4.00k 16.00k 200.00k smu. Total Carg ully loaded) is 3 ation (again, full Life support o y equipment; th	80 IV on of the						
Hull LS- LS- P-0. P-0. J-2. CG- CG- Con Con Con Con Con Con Con Con Con Con	I Material 2 2 25 25 25 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 28 (95% neut) 20 (00067 (range = 2 light-y 10 Transceiver ive Sensor (G = 1, R = 0.5) ock go Coupler dge (2 x cabin) andard Cabins I (6650 hrs.) Total Mess = 23 acity = 15.6 met t-years per hour ded) is 224 gs, rd will maintain Arris class craft	Mass (Metric Tons) 25.0 2.6 2.6 2.6 0.7 0.7 150.0 2.0 2.0 2.0 0.1 0.1 0.3 (rears) 0.1 1.0 2.0 25.0 4.0 16.0 0.2 4.4 tons. Total etric tons. FTL Maximum nor neutralized inte 160 SIZ points t is generally de following) are	Energy Cost (units/hour) 0.000 0.002 generates 187.5 generates 187.5 225.000 28.000 28.000 0.001 0.001 8.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	(1k = 1000) 25.00k 40.00k 250.00k 250.00k 250.00k 843.75k 336.00k 200.00k 200.00k 200.00k 10.67k 5.00k 50.00k 10.00k 50.00k 4.00k 16.00k 200.00k smu. Total Carg ully loaded) is 3 ation (again, full Life support o y equipment; th	BO IV Don Dof					47600	

Numerical Subverse Subverse Construction 1000 10000 10000 10000 1000 10000 10000 10000 1000 10000 10000 10000 1000 0000 10000 10000 1000 0000 10000 10000 1000 0000 10000 10000 1000 0000 80000 80000 1000 10000 10000 10000 10100 101 0000 10000 10102 101 0000 15000 10102 101 0000 15000 10102 0000 16000 16000 10102 0000 16000 1000 10102 0000 16000 1000 1012 0000 16000 1000 1012 0000 16000 1000 1012 0000 10000 10000 1012 000 0000		CL	ASS	SA	LVA	GEO	S	н пл	P
Item Mass (Metric Tons) (units/hour) Cost (Ik = 1000) (1k = 1000) Hull Material (0.000 40.00k (Ik = 1000) Hull Material (0.01 R-1) 0.000 10.00k I'C Battery 40.0 10.000 10.00k (A-0.1 R-1) 0.25 Shield 10.000 10.00k (A-0.1 R-1) 0.25 Shield 0.005 50.00k LS3 unit 2.3 0.003 60.00k CG-10 (86% neut) 2.0 10.000 150.00k CG-10 (86% neut) 10.2 10.000 150.00k CG-10 (86% neut) 10.2 10.000 150.00k CG-10 (86% neut) 0.01 150.00k 160.00k CJ-167 0.6 125.000 160.00k CJ-1667 0.6 125.000 160.00k CJ-1667 0.6 125.000 160.00k CJ-1667 0.0 10.001 15.00k Active Sensor 1.0 0.201 150.00k CJ-167 0.0 0.000 20.00k CJ-167									
Item Mass (Metric Tons) Energy Cost (units/hour) Cost (1k = 1000) Hull Metrial 40.0 0.000 10.000 10.00k (A-0.1 R-1) 10.000 10.00k (A-0.1 R-1) (A-0.1 R-1) 0.005 62.50k 62.50k (A-0.1 R-1) 0.005 50.00k 10.00k (S-31 R-1) 0.25 Shield 10.00 60.00k LS3 unit 2.3 0.003 60.00k CG-10 (66% neut) 2.0 10.000 150.00k CG-10 (66% neut) 2.0 10.000 160.00k CJ-167 0.6 125.000 166.70k Computer Grade 15 0.1 0.001 150.00k 167.00k CJ-167 0.0 1.000 160.00k 10.24 CJ-167 0.0 0.000 2.000.00k 10.24 <									
Item Mass (Metric Tons) (units/hour) Cost (Ik = 1000) (1k = 1000) Hull Material (0.000 40.00k (Ik = 1000) Hull Material (0.01 R-1) 0.000 10.00k I'C Battery 40.0 10.000 10.00k (A-0.1 R-1) 0.25 Shield 10.000 10.00k (A-0.1 R-1) 0.25 Shield 0.005 50.00k LS3 unit 2.3 0.003 60.00k CG-10 (86% neut) 2.0 10.000 150.00k CG-10 (86% neut) 10.2 10.000 150.00k CG-10 (86% neut) 10.2 10.000 150.00k CG-10 (86% neut) 0.01 150.00k 160.00k CJ-167 0.6 125.000 160.00k CJ-1667 0.6 125.000 160.00k CJ-1667 0.6 125.000 160.00k CJ-1667 0.0 10.001 15.00k Active Sensor 1.0 0.201 150.00k CJ-167 0.0 0.000 20.00k CJ-167								+++++	
Item Mass (Metric Tons) Energy Cost (units/hour) Cost (1k = 1000) Hull Metrial 40.0 0.000 10.000 10.00k (A-0.1 R-1) 10.000 10.00k (A-0.1 R-1) (A-0.1 R-1) 0.005 62.50k 62.50k (A-0.1 R-1) 0.005 50.00k 10.00k (S-31 R-1) 0.25 Shield 10.00 60.00k LS3 unit 2.3 0.003 60.00k CG-10 (66% neut) 2.0 10.000 150.00k CG-10 (66% neut) 2.0 10.000 160.00k CJ-167 0.6 125.000 166.70k Computer Grade 15 0.1 0.001 150.00k 167.00k CJ-167 0.0 1.000 160.00k 10.24 CJ-167 0.0 0.000 2.000.00k 10.24 <				Vivon Class Salva	ge Ship (400 tops)				
(Metric Tons) (units/hour) (1k = 1000) Hull Material 0.00 40.00k TC Battery 40.0 10.000 10.00k (A.0.1 R-1) 10 10.000 10.00k (A.0.1 R-1) 10 0.000 10.00k (A.0.1 R-1) 10.00 62.500 62.50k (J.3.1 R-1) 0.025 51.00k 60.00k (L.3.2 unit 2.9 0.003 60.00k (L.3.3 unit 2.9 0.003 60.00k (C.G-10 (96% neut) 2.0 10.000 150.00k C.G-10 (92% neutral:earsite 10 0.001 150.00k <td< td=""><td></td><td></td><td></td><td>Vixen Class Salva</td><td></td><td></td><td></td><td></td><td></td></td<>				Vixen Class Salva					
Hull Material 40.0 0.000 40.00k TC Battery 40.0 10.000 10.00k (A-0, I R-1) TC Battery 40.0 10.000 10.00k (A-0, I R-1) TC Battery 40.0 10.000 10.00k (A-0, I R-1) D-0.25 Shield 100.0 62.500 62.50k T-5 Mind Shield 0.5 0.003 60.00k 153.00k L-3 unit 2.9 0.003 60.00k 150.00k CG-10 (96% neut) 2.0 10.000 150.00k 150.00k CG-10 (96% neut) 2.0 10.000 150.00k 160.00k Computer Grade 15 0.1 0.001 150.00k 160.00k 160.00k Coll667 0.6 125.00k 160.70k 160.00k 160.00k (Grade 1, Range 2) Passive Sensor 1.0 0.01 15.00k Passive Sensor 1.0 0.000 20.00k 10.00k (Grade 1) Bridge (2 x cabin) 4.0 0.000 20.00k 10.01k 1	NI		ltem						
TC Battery 40.0 10.000 10.00k (A-01 R-1) TC Battery 40.0 10.000 10.00k (A-01 R-1) D-0.25 Shield 100.0 62.50k 62.50k T-5 Mind Shield 0.5 0.005 50.00k 62.50k LS-3 unit 2.9 0.003 60.00k 62.50k CG-10 (96% neut) 2.0 10.000 150.00k 62.50k CG-10 (96% neut) 2.0 10.000 150.00k 62.50k CG-10 (96% neut) 2.0 10.000 150.00k 62.50k Computer Grade 15 0.1 0.001 150.00k 62.50k 64.50k Computer Grade 15 0.1 0.001 15.00k 62.50k 64.50k Conder J, Range 2) 0.200 200.00k 63.50k 64.50k Passive Sensor 10.0 0.000 4.00k 64.50k Cargo Capacity = 27.5 metric tons. FTL cruising speed (truly loaded) 61.61/10k loaded) 61.61/10k loaded) Fuel (3125 hours) 0.20 0.000k 60.50/10k 62.50		+++++	Hull Material					19 Ja 20 2	
TC Battery 40.0 10.000 10.00k (A-0.1 R-1) D-0.25 Shield 100.0 62.500 62.50k T-5 Mind Shield 0.5 0.005 50.00k 62.50k LS-3 unit 2.9 0.003 60.00k 62.50k P-0.95 1.0 generates 712.5 950.00k 62.50k CG-10 (96% neut) 2.0 10.000 150.00k 62.50k CG-10 (96% neut) 2.0 10.000 150.00k 62.50k CG-10 (96% neut) 2.0 10.000 150.00k 62.50k Compter Grade 15 0.1 0.001 15.00k 62.50k 62.50k Compter Grade 15 0.1 0.200 200.00k 62.50k 62.50k Cade 1, Range 2) Pasive Sensor 1.0 0.200 200.00k 62.50k Pasive Sensor 10.0 0.000 20.00k 62.50k 62.50k 62.50k Clarade 1, Range 2) Pasive Sensor 10.0 0.000 20.00k 62.50k 62.50k 62.50k 62.50					10.000	10.00k			
(A.0.1 R-1) D-0.25 Shield 100.0 62.500 62.50k T-5 Mind Shield 0.5 0.003 60.00k L-3 unit 2.9 0.001 150.00k CG-10 (96% neut) 2.0 10.000 150.00k CG-10 (96% neut) 2.0 10.001 150.00k Computer Grade 15 0.1 0.001 150.00k 150.00k Computer Grade 15 0.1 0.001 150.00k 166.70k (range - 5 light-years) 7 7 7 Rd-30 transciever 0.0 0.200 200.00k (Grade 1, Range 2) 7 7 7 Passive Sensor 10.0 0.000 2.00k 10 Cabins 2.0 0.000 20.00k 10 Cabins 2.0 0.000 200.			A DE TRADUCIÓN DE LA COMPACTIÓN DE LA COMPA	10.0	10.000	10.001			
D-0.25 Shield 100.0 62.500 62.50k T-5 Mind Shield 0.5 0.003 60.00k LS-3 unit 2.9 0.000 60.00k LS-3 unit 2.9 0.000 60.00k LS-3 unit 2.9 0.000 150.00k CG-10 (96% neut) 2.0 10.000 150.00k CG-10 (96% neut) 2.0 10.000 150.00k Computer Gradel 15 0.1 0.001 150.00k 150.00k Computer Gradel 76 0.6 125.000 166.70k 166.70k (rarage = 5 light-years) Rd-30 transciever 0.1 0.200 200.00k (Gradel 1, Range 2) Passive Sensor 10.0 0.100 50.00k Pridge (2x cabin) 4.0 0.000 20.00k 10 Catiocks 4.0 0.000 20.00k 10 C				40.0	10.000	10.00k		** ** 80 56	
LS3 unit 2.9 0.003 60.00k LS3 unit 2.9 0.003 60.00k LS3 unit 2.9 0.003 60.00k CG-10 (96% neut) 2.0 10.000 150.00k CG-10 (96% neut) 2.0 10.000 150.00k J-1,024 101.2 102.400 259.06k Computer Grade 15 0.1 0.001 150.00k C-0,1667 0.6 125.000 166.70k (arage = 5 light-years) Rd-30 transciever 0.1 0.001 15.00k Rd-30 transciever 0.1 0.001 50.00k (Grade 1, Range 2) Pasive Sensor 1.0 0.000 20.00k (Grade 1, Range 2) Pasive Sensor 1.0 0.000 20.00k Positive Sensor 1.0 0.000 20.00k (Grade 1, Range 2) Pasive Sensor 1.0 0.000 20.00k (Grade 1, Range 2) Pasive Sensor 1.0 0.000 20.00k (Grade 1, Range 2) Pasive Sensor 1.0 0.000 2				100.0	62,500	62.50k			+++++
LS.3 unit 2.9 0.003 60.00k P0.95 1.0 generates 712.5 950.00k CG-10 (96% neut) 2.0 10.000 150.00k CG-10 (96% neut) 2.0 10.000 150.00k CG-10 (96% neut) 2.0 10.000 150.00k CG-10 (96% neut) 2.0 10.001 150.00k CG-10 (96% neut) 0.001 150.00k 150.00k Computer Grade 15 0.1 0.001 150.00k 166.70k (range = 5 light-years) Rd-30 transciever 0.1 0.200 200.00k (Grade 1, Range 2) Passive Sensor 10.000 20.00k 10 Passive Sensor 10.0 0.000 20.00k 10 10 Cargo Capacity = 27.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded)		-++++	T-5 Mind Shield						
P.0.95 1.0 generates 712.5 950.00k CG-10 (96% neut) 2.0 10.000 150.00k CG-10 (96% neut) 2.0 10.000 150.00k J-1.024 101.2 102.400 259.06k Computer Grade 15 0.1 0.001 150.00k C-0.1667 0.6 125.000 166.70k (range = 5 light-years) range 20 700.00k 700.00k Passive Sensor 1.0 0.200 200.00k 700.00k (Grade 1, Range 2) 700.00 4.00k 700.00k 700.00k Passive Sensor 10.0 0.000 200.00k 700.00k 700.00k 10 Cabins 2.0 0.000 20.00k 700.00k 700.00k 700.00k 11 Cabins 2.0.2 0.000 200.00k 700.00k 700									
CG-10 (96% neut) 2.0 10.000 150.00k CG-10 (96% neut) 2.0 10.000 150.00k J-1.024 101.2 102.400 259.06k Computer Grade 15 0.1 0.001 150.00k C-0.1667 0.6 125.000 166.70k (range = 5 light-years) Rd-30 transciever 0.1 0.001 150.00k Rd-30 transciever 0.1 0.001 50.00k (Grade 1, Range 2) Passive Sensor 10.0 0.100 50.00k (Grade 1, Range 2) Passive Sensor 10.0 0.000 4.00k Bridge (2 x cabin) 4.0 0.000 20.00k (Grade 1) Bridge (2 x cabin) 4.0 0.000 20.00k (Diatic Sensor) Total Mass = 372.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity 21.5 metric tons. FTL cruising speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 21 Stize points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jumpschase for his firm. Terrazon Salvage, was an early ve							+++-	++++	
J-1.024 101.2 102.400 259.06k Computer Grade 15 0.1 0.001 150.00k C-0.1667 0.6 125.000 166.70k (range = 5 light-years) Rd-30 transciever 0.1 0.001 15.00k Rd-30 transciever 0.1 0.200 200.00k 0.00k (Grade 1, Range 2) Passive Sensor 10.0 0.100 50.00k Passive Sensor 10.0 0.100 50.00k 0.00k (Grade 1) Bridge (2x cabin) 4.0 0.000 2.00k 0.00k 10 Cabins 20.0 0.000 20.00k 0.00k 0.00k 0.00k Carjo Capacity = 27.5 metric tons. Total Cost = 2,627,260 smu. Total Cost = 3,627,260 smu. Total Cost = 3,62,627,260 smu. Total C						医马格氏试验 医马克尔氏试验检尿道 法法法法法 化乙烯			
Computer Grade 15 0.1 0.001 150.00k Conj667 0.6 125.000 166.70k (range = 5 light-years) Rd-30 transciever 0.1 0.001 15.00k Rd-30 transciever 0.1 0.01 15.00k 166.70k (Grade 1, Range 2) Passive Sensor 1.0 0.200 200.00k (Grade 1, Range 2) Passive Sensor 10.0 0.000 4.00k Didge (2x cabin) 4.0 0.000 20.00k (Grade 1) Bridge (2x cabin) 0.000 20.00k 10 Cabins 20.0 0.000 20.00k 10 Cabins 20.0 0.000 20.00k 10 Cabins 20.0 0.000 20.00k 11 Us loaded) of 50g neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour, maximum normal space accleration (again, the third of 50g normal space accleration and for able price: the Vixen, It is the CHOICE for a first ship by new slavage firms, with tis high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his choice can be your choice as well. The Vixen should NOT, however, be consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The V	+++++								
C0.1667 0.6 125.000 166.70k (range = 5 light-years) Rd-30 transciever 0.1 0.001 15.00k Active Sensor 1.0 0.200 200.00k (Grade 1, Range 2) Passive Sensor 10.0 0.100 50.00k (Grade 1, Range 2) Passive Sensor 10.0 0.100 50.00k (Grade 1) Bridge (2 x cabin) 4.0 0.000 20.00k 0 10 Cabins 20.0 0.000 20.00k 0 10 Cabins 20.0 0.000 20.00k 0 10 Cabins 20.0 0.000 20.00k 0 10 Cabins 20.2 0.000 20.00k 0 Total Mass = 372.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FTL cruising speed (Iuly loaded) 0 10 fb light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For these desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage fi									
(range = 5 light-years) Rd-30 transciever 0.1 0.001 15.00k Active Sensor 1.0 0.200 200.00k (Grade 1, Range 2) Passive Sensor 10.0 0.100 50.00k Bridge (2 x cabin) 4.0 0.000 4.00k 2 Airlocks 4.0 0.000 20.00k 10 Cabins 20.0 0.000 20.00k 10 Cabins 20.0 0.000 200.00k 11 Cargo Capacity = 27.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FL Crusing speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour for short periods of time, A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Wixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expe									++++
Active Sensor 1.0 0.200 200.00k (Grade 1, Range 2) Passive Sensor 10.0 0.100 50.00k Passive Sensor 10.0 0.000 4.00k (Grade 1) Bridge (2 x cabin) 4.0 0.000 20.00k Di Cabins 20.0 0.000 20.00k 10 Cargo Capacity = 27.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams									S A. D. A. U.
(Grade 1, Range 2) Passive Sensor 10.0 0.100 50.00k (Grade 1) Bridge (2 x cabin) 4.0 0.000 4.00k 2 Airlocks 4.0 0.000 20.00k 10 10 Cabins 20.0 0.000 20.00k 10 Fuel (3125 hours) 0.2 0.000 200.00k Total Mass = 372.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space borts tspeed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employeed on missions requiring extreme high									
Passive Sensor 10.0 0.100 50.00k (Grade 1) Bridge (2 x cabin) 4.0 0.000 20.00k 2 Airlocks 4.0 0.000 20.00k 10 Cabins 20.0 0.000 20.00k 10 Cabins 20.0 0.000 200.00k 10 Cabins 20.2 0.000 200.00k 10 Cabins 27.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) 0 f 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: <i>the Vixen</i> , 1t is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++				0.200	200.00k			+++++
Bridge (2 x cabin) 4.0 0.000 4.00k 2 Airlocks 4.0 0.000 20.00k 2 Airlocks 4.0 0.000 20.00k 10 Cabins 20.0 0.000 200.00k Fuel (3125 hours) 0.2 0.000 200.00k Total Mass = 372.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) 0 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high					0.100	50.00k			
2 Airlocks 4.0 0.000 20.00k 10 Cabins 20.0 0.000 20.00k 10 Cabins 20.0 0.000 20.00k Fuel (3125 hours) 0.2 0.000 200.00k Cargo Capacity = 27.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high			(Grade 1)						+ $+$ $+$ $+$ $+$
10 Cabins 20.0 0.000 20.00k Fuel (3125 hours) 0.2 0.000 200.00k Total Mass = 372.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Wonitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++								+++++
Fuel (3125 hours) 0.2 0.000 200.00k Total Mass = 372.5 metric tons. Total Cost = 2,627,260 smu. Total Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high									
Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power gen- eration and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: <i>the</i> Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high									+ $+$ $+$ $+$ $+$ $+$
Cargo Capacity = 27.5 metric tons. FTL cruising speed (fully loaded) of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power gen- eration and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: <i>the</i> Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++								
of 16 light-years per hour, maximum normal space accleration (again, fully loaded) of 50gs neutralized internally to 2gs. Excess power gen- eration and computer capacity allow speeds of up to 32 light-years per hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high									
fully loaded) of 50gs neutralized internally to 2gs. Excess power generation and computer capacity allow speeds of up to 32 light-years perhour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++								+
hour for short periods of time. A Vixen class ship can carry up to 240 SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++			 A set of the set of					
SIZ points of animal life in complete safety. For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high									
For those desiring moderate firepower at an affordable price: the Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++				ter and and and and and and	in carry up to 240			
Vixen. It is THE CHOICE for a first ship by new salvage firms, with its high (50g) normal space accleration and high jump space burst speed (32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++					ordable price: the			
(32 light-years per hour). Commander Pierson's first ship purchase for his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high			-				\square		
his firm, Terrazon Salvage, was an early version of the Vixen. Now his choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++	+++++		 A second sec second second sec					
choice can be your choice as well. The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++								
The Vixen should NOT, however, be considered by seasoned teams preparing for high-risk runs (such teams should consider instead ships of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high									
of the Monitor or Yastreb classes, also available from Alderson Yards). The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high			The Vixen sh	nould NOT, howev					
The Vixen has been designed for moderate risk salvage expeditions and should NOT be employed on missions requiring extreme high	+++++								
and should NOT be employed on missions requiring extreme high									
	+++++							++++	
	+++++								
	+++++						++++	++++	
							++++	++++	
							++++	++++	
							++++		+++++
				++++++++					

Yastreb Class Private Salvage Ship (1000 tons)

Item	Mass (Metric Tons)	Energy Cost (units/hour)	Cost (1k = 1000)
Hull Material	100.0	0.000	100.00k
TC Battery (A-0.75 R-1)	300.0	562.500	562,50k
AP Guns (5)	1.0	0.000	75.00k
D-0.75 Shield	300.0	562.500	562.50k
T-10 Mind Shield	1.0	0.100	100.00k
LS-3 unit	2.9	0.003	60.00k
LS-3 unit	2.9	0.003	60.00k
P-2.5	1.4	generates 1875	2500,00k
P-2.5	1.4	generates 1875	2500.00k
CG-50 (99% neut)	2.0	50,000	3000.00k
CG-50 (99% neut)	2.0	50,000	3000.00k
J-4	200.0	400.000	2000.00k
Computer Grade 18	8 0.1	0.001	180.00k
C-0.1667	0.6	125.000	166.70k
(range = 5 light-	vears)		
Rd-30 transceiver	0.1	0.001	15.00k
Active Sensor (G = 1, R = 1.0)	1.0 abort2 ao	0.100	100.00k
Passive Sensor (Grade 1)	10.0	0.100	50.00k
Bridge (2 x cabin)	4.0 0000	0.000	4.00k
2 Airlocks	4.0 080.0	0.000	20.00k
10 Cabins	20.0 000	0.000	20.00k
Sick Bay	10.0 00.0	0.000	1000.00k
Fuel (4000 hrs.)	0.7	0.000	700.00k

Total Mass = 965.1 metric tons. Total Cost = 16,775,700 smu. Total Cargo Capacity = 34.9 metric tons. FTL cruising speed (fully loaded) of 20 light-years per hour, maximum normal space acceleration (again, fully loaded) of 100gs neutralized internally to 1g. 240 SIZ points in creatures can be supported by the life support unit on board this vehicle but, due to regulations, it is rated to carry only a total of 200 SIZ points.

The Yastreb class provides performance, handling and armaments, equal or superior to any other non-military salvage craft in its price range. Anything that the Yastreb cannot outfight, it can outrun (military craft excepted). So the discerning salvage team need no longer suffer a common fate with the unarmed and unarmored merchantman; now it can fight back! The Yastreb class was originally designed on special contract for Terrazon Salvage, and has been made available to the general business community by special agreement with that firm.

Credit is available to established customers and entrepeneurs on the following terms: 20% Down payment, 18% annual interest, with a choice of three loan periods – 96 months (monthly payments of 264,697 smu), 48 months (monthly payments of 394,229 smu), and 36 months (monthly payments of 485,186 smu). All credit terms subject to approval based upon projected ability to meet payments and upon past credit record. If these terms do not meet your needs, feel free to discuss alternative arrangements with the Financing Division of your local Alderson Yard.

CARGO SECTION 34.9 TONS AIRLOCK

SHI

THE ALDERSON YARDS COMPONENTS DIVISION

COMPONENT

For those individuals wishing to customize existing craft or to build their own ships, Alderson Yards now provides component system and subsystem assemblies. You can now be the first person in your living group to customize your aircar for intersystem space travel.

Special components not commonly available on the open market can be purchased at your local Alderson Shipyard (please call to confirm availability and/or delivery schedule).

Cargo Coupler Subassembly

The cargo coupler module was originally designed and patented by Instel Corporation for internal use only. The Alderson Shipyards has acquired a general manufacturing license from Instel, and is now prepared to deliver units in quantity. A cargo coupler module masses 25 metric tons and costs 50,000 smu.

The cargo module is currently available in a single design: the unit is a cylinder twelve meters in diameter and two meters thick. In the center is an integral cargo airlock, five meters in diameter, allowing large containerized cargo units to be loaded or unloaded with relative ease. Those customers requiring alternative designs should consult with the Engineering and/or Marketing Divisions of their local Alderson Yard concerning feasibility, pricing, and delivery times for non-standard units.

The cargo coupler allows the design of truly modular spacecraft; no longer need the shipbuilder be constrained by hull size or ship mass limitations. With the coupler, new modules can be designed, built, and attached to the ship at any later date (or exchanged for other modules, as conditions change).

RB Cocoon Subsystem

An RB-N unit will hold an individual of up to SIZ 40*N. It provides 50 points of armor (for use in determining individual survival during Ship-to-Ship combat) in addition to complete life support. It also provides protection against uncompensated acceleration. An RB-N unit masses [(N cubed) + 5.5 + (2 x Cube Root (N))] tons, rounding all fractions up to the next highest tenth of a ton. An RB-N unit costs [110 + (15 x N)] thousand smu, and uses 0.010 x N energy units per hour.

Cycling an individual into an RB-N unit takes one turn (2 minutes); safe removal of an individual from an RB-N unit takes ten turns (20 minutes). Only one individual may use an RB cocoon at a time, even if the total SIZ points of individuals attempting use is less than the rated capacity of the unit. If two or more individuals attempt to use a single RB unit at the same time, all will die.

When operating, the RB cocoon is filled with an oxygen laden fluorocarbon based fluid (which it forces into all body cavities of the occupant). This fluid protects the occupant somewhat against the effects of high accelerations: divide the g stresses by ten before computing ENC based penalties. For example, under a 1.51g uncompensated acceleration a normal Human (STR 10, END 20) will lose 2D4 END per hour. This same individual, if in an RB cocoon, must be subjected to an uncompensated acceleration of over 15gs to suffer this same 2D4 END loss per hour.

There are, however, certain penalties involved in using an RB cocoon. An individual in an RB cocoon has no time sense; he is in a semi-trance dream state while protected by the cocoon. He is unable to act or think coherently while in an operating RB unit, and his END drops to 1 once he has been cycled into the RB Cocoon (this END loss begins to recover at the normal rate after he has been removed from the cocoon).

A list of typical units, and the masses, costs, and SIZ points of occupant supported by these units follows:

it's N. W.

ALDERSON EMINENTLY RESPECTED... EVEN BY OUR COMPETITION

- There is something very special about an Alderson Yards-built ship.
- Is it the utilitarian style and comfort of our ships?
- Is it the meticulous engineering and design?
- Or perhaps it's the reasonable price and the numerous types of vessels we build That something special goes beyondwhat you can see or test for. It is a feeling of trust and well being. You know Alderson has a reputation to defend, and Alderson Yards will not allow any mistakes to tarnish our image.None.

This catalog contains over 15 of our most popular and useful ships for personal or commercial usage. The information is usable with the Other Sun's gaming system. So enjoy. And remember, Alderson Yards wants your shipbuilding to be fun and rewarding.

