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Preface

Classical orbit calculation in Newtonian mechanics has experienced a renaissance
in recent decades. With the beginning of space flights there was suddenly a great
practical need to calculate orbits with high accuracy. At the same time, advances in
computer technology have improved the speed of orbit calculations enormously.

These advances have also made it possible to study the gravitational three-body
problem with new rigour. The solutions of this problem go beyond the practicalities
of space flight into the area of modern astrophysics. They include problems in the
Solar System, in the stellar systems of our Galaxy as well as in other galaxies. The
present book has been written with the astrophysical applications in mind.

The book is based on two courses which have been taught by us: Celestial
Mechanics and Astrodynamics. The former course includes approximately Chapters
2–5 of the book, with some material from later chapters. It is a rather standard
introduction to the subject which forms the necessary background to modern topics.
The celestial mechanics course has been developed in the University of Helsinki
by one of us (H. K.) over about two decades. The remainder of the book is based
on the astrodynamics course which arose subsequently in the University of Turku.
Much of the material in the course is new in the sense that it has not been presented
at a textbook level previously.

In our experience there has been a continuous need for specialists in classical
orbit dynamics while at the same time this area of study has received less attention
than it used to in the standard astronomy curriculum. By writing this book we hope
to help the situation and to attract new students to the research area, which is still
modern after more than 300 years of studies.

We have been privileged to receive a great deal of help and encouragement
from many colleagues. Especially we would like to thank Douglas Heggie, Kimmo
Innanen and Bill Saslaw who have between them read nearly the whole manuscript
and suggested numerous improvements. We also appreciate the comments by Victor
Orlov, Harry Lehto and Tian-Yi Huang which have been most useful. Seppo Mikkola
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x Preface

has generously provided research tools for the calculations in this book. Other
members of the Turku research group have also helped us with illustrations. Most
of all, we would like to thank Sirpa Reinikainen for typing much of the final text,
including the great many mathematical formulae.

Financial support for this project has been provided by Finland’s Society for
Sciences and Letters and the Academy of Finland (project ‘Calculation of Orbits’),
which gave the opportunity for one of us (M. V.) to concentrate on writing the book
for a period of two years. The generous support by the Department of Computer
Science, Mathematics and Physics (in Barbados) and the Department of Physics
(in Trinidad) of the University of the West Indies made it possible to carry out
the writing in optimal surroundings. Parts of the text were originally published in
Finnish: H. Karttunen, Johdatus Taivaanmekaniikkaan, Helsinki: Ursa, 2001.

Finally, M. V. would like to express his appreciation to Sverre Aarseth who taught
him how to calculate orbits (and much else), and to his wife Kathleen, the Caribbean
link, whose encouragement was vital for the accomplishment of the book.



1

Astrophysics and the three-body problem

1.1 About the three-body problem

The three-body problem arises in many different contexts in nature. This book deals
with the classical three-body problem, the problem of motion of three celestial
bodies under their mutual gravitational attraction. It is an old problem and logically
follows from the two-body problem which was solved by Newton in his Principia
in 1687. Newton also considered the three-body problem in connection with the
motion of the Moon under the influences of the Sun and the Earth, the consequences
of which included a headache.

There are good reasons to study the three-body gravitational problem. The motion
of the Earth and other planets around the Sun is not strictly a two-body problem.
The gravitational pull by another planet constitutes an extra force which tries to
steer the planet off its elliptical path. One may even worry, as scientists did in the
eighteenth century, whether the extra force might change the orbital course of the
Earth entirely and make it fall into the Sun or escape to cold outer space. This was a
legitimate worry at the time when the Earth was thought to be only a few thousand
years old, and all possible combinations of planetary influences on the orbit of the
Earth had not yet had time to occur.

Another serious question was the influence of the Moon on the motion of the
Earth. Would it have long term major effects? Is the Moon in a stable orbit about the
Earth or might it one day crash on us? The motion of the Moon was also a question
of major practical significance, since the Moon was used as a universal time keeping
device in the absence of clocks which were accurate over long periods of time. After
Newton, the lunar theory was studied in the eighteenth century using the restricted
problem of three bodies (Euler 1772). In the restricted problem, one of the bodies
is regarded as massless in comparison with the other two which are in a circular
orbit relative to each other. At about the same time, the first special solution of the
general three-body problem was discovered, the Lagrangian equilateral triangle
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2 Astrophysics and the three-body problem

solution (Lagrange 1778). The theory of the restricted three-body problem was
further developed by Jacobi (1836), and it was used for the purpose of identifying
comets by Tisserand (1889, 1896) and reached its peak in the later nineteenth
century with the work of Hill (1878) and Delaunay (1860). The ‘classical’ period
reached its final phase with Poincaré (1892–1899).

In spite of these successes in special cases, the solution of the general three-body
problem remained elusive even after two hundred years following the publication
of Principia. In the general three-body problem all three masses are non-zero and
their initial positions and velocities are not arranged in any particular way. The
difficulty of the general three-body problem derives from the fact that there are no
coordinate transformations which would simplify the problem greatly. This is in
contrast to the two-body problem where the solutions are found most easily in the
centre of mass coordinate system. The mutual force between the two bodies points
towards the centre of mass, a stationary point in this coordinate system. Thus the
solution is derived from the motion in the inverse square force field. Similarly, in
the restricted three-body problem one may transfer to a coordinate system which
rotates at the same rate around the centre of mass as the two primary bodies. Then
the problem is reduced to the study of motions in two stationary inverse square
force fields. In the general problem, the lines of mutual forces do not pass through
the centre of mass of the system. The motion of each body has to be considered
in conjunction with the motions of the other two bodies, which made the problem
rather intractable analytically before the age of powerful computers.

At the suggestion of leading scientists, the King of Sweden Oscar II established
a prize for the solution of the general three-body problem. The solution was to
be in the form of a series expansion which describes the positions of the three
bodies at all future moments of time following an arbitrary starting configuration.
Nobody was able to claim the prize for many years and finally it was awarded in
1889 to Poincaré who was thought to have made the most progress in the subject
even though he had not solved the specific problem. It took more than twenty years
before Sundman completed the given task (Sundman 1912). Unfortunately, the
extremely poor convergence of the series expansion discovered by Sundman makes
this method useless for the purpose of calculating the orbits of the three bodies.
Now that the orbits can be calculated quickly by computer, it is quite obvious why
this line of research could not lead to a real solution of the three-body problem: the
orbits are good examples of chaos in nature, and deterministic series expansions
are utterly unsuitable for their description. Poincaré was on the right track in this
regard and with the current knowledge was thus a most reasonable recipient of the
prize.

At about the same time, a new approach began which has been so successful in
recent years: the integration of orbits step by step. In orbit integration, each body,
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P1 (1, 3)
m1 = 3

P2 (−2, −1)
m2 = 4

P3 (1, −1)
m3 = 5

Figure 1.1 Initial configuration of the Pythagorean problem.

in turn, is moved forward by small steps. In the most basic scheme, the step is
calculated on the basis of the accelerations caused by the two other bodies during
that step while they are considered to remain fixed. There is an error involved when
only one body is moved at a time, and others move later, but this can be minimised
by taking short steps and by other less obvious means.

Burrau (1913) considered a well defined, but in no way special, initial configu-
ration of three bodies which has since become known as the Pythagorean problem
since the three bodies are initially at the corners of a Pythagorean right trian-
gle. The masses of the three bodies are 3, 4 and 5 units, and they are placed
at the corners which face the sides of the triangle of the corresponding length
(Fig. 1.1). In the beginning the bodies are at rest. Burrau’s calculation revealed
the typical behaviour of a three-body system: two bodies approach each other,
have a close encounter, and then recede again. Subsequently, other two-body en-
counters were calculated by Burrau until he came to the end of his calculating
capacity. Only after the introduction of modern computers and new orbit integra-
tion methods was the celestial dance in the Pythagorean problem followed to its
conclusion.

Later work has shown that the solution of the Pythagorean problem is quite typical
of initially bound three-body systems. After many close two-body approaches, a
configuration arises which leads to an escape of one body and the formation of
a binary by the other two bodies (see Fig. 1.2, Szebehely and Peters 1967). A
theoretical treatment of a three-body system of this kind is given in Chapter 7. In
the following chapter, situations are discussed where a third body comes from a
large distance, meets a binary, and perhaps takes the place of one of the binary
members which escapes. Such orbits were calculated already in 1920 (Becker
1920). Sometimes the third body is always well separated from the binary; then the
situation is best described by perturbations on the binary caused by the third body.
Some examples of these systems are discussed in Chapter 10.
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Figure 1.2 Trajectories of the Pythagorean problem. The orbits up to time 10, 20,
40, 60, 70 and 80 units are shown. The last two panels are identical since the escape
has already happened and the bodies are outside the frame.

In recent years there has been increasing demand for solutions of the general
three-body problem in various astrophysical situations. For example, binaries and
their interactions with single stars play a major role in the evolution of star clusters
(Aarseth 1973). Triple stellar systems are another obvious astrophysical three-body
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problem. Many other astrophysical bodies, ranging from compact bodies to galax-
ies, occur in triple systems. These will be discussed in Chapter 11.

Before then, we have to do some preparatory work which is partly found in
standard textbooks on mechanics and celestial mechanics. The proper discussion
of the three-body problem is thus delayed until Chapter 5 where special cases are
first introduced. This leads to consideration of the general three-body problem in
the later chapters, the main objective of this book.

1.2 The three-body problem in astrophysics

For more than 300 years there have been many different motivations to solve the
three-body problem and many different techniques have been applied to it. In this
book we have the rather limited purpose of looking at solutions of astrophysi-
cal significance. At the present time we can solve any given three-body problem,
starting from the known positions, velocities and masses of the three bodies, by
using a computer. There is of course the limitation of the accuracy of calculation
which may be quite significant in some cases. But notwithstanding the accuracy, the
solution of an astrophysical problem usually involves much more than a calculation
of a single orbit. Typically we have to sample three-body orbits in a phase space of
up to eleven dimensions. Then the calculation of orbits is only one tool; one has to
have a deeper understanding of the three-body process to make sense of the limited
amount of information that is derivable from orbit calculations.

Therefore we do not deal with the mathematical three-body problem. Fortunately,
there are excellent books by Marchal (1990) and Hénon (1997, 2001) which deal
with the mathematical aspects very thoroughly. As an example, periodic orbits of
the general three-body problem are of great mathematical interest, but there are
very few examples where they are important in astrophysics.

In problems of astrophysical importance, one may almost always identify a
binary and a third body. A binary can be treated as a single entity with certain
‘internal’ properties (like a molecule). It is described by its component masses,
by its energy and angular momentum, as well as by its orientation in space. This
binary entity interacts with a third body once, or more frequently, which changes the
internal properties of the binary. At the same time, the third body absorbs whatever
energy is given out from the binary, in order to conserve the total energy. Similarly,
conservation of angular momentum between the binary and the third body has to
be satisfied.

Before we can take up the discussion of the three-body problem, we have to
be familiar with binaries, i.e. the two-body problem. The two-body problem is
treated in basic courses of mechanics and celestial mechanics. Therefore the dis-
cussion of Chapter 3 may appear as unnecessary repetition to some readers, and they
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may want to skip much of the first chapters. Also the Hamiltonian techniques of
Chapter 4 are commonly studied in courses of advanced mechanics. They form
such an essential part of the treatment of weak perturbations of binaries that it is
necessary to introduce the Hamiltonian concepts also in this book.

A planet going around the Sun is an example of a binary. The third body could then
be another planet, a moon, an asteroid or a comet. Because of the large differences
between the masses of the bodies, from the dominant Sun down to asteroids of
kilometre size or even smaller, Solar System dynamics is special in many ways. A
very up to date treatment exists in this area (Murray and Dermott 1999). We discuss
only a small class of Solar System problems which are related to stellar dynamics
and therefore form a suitable introduction to later studies of three-body systems
with more equal masses. Thus Chapter 5 contains many topics which readers may
have encountered earlier.

At the present time, three-body astrophysics is primarily motivated by the need
to understand the role of binaries in the evolution of stellar systems. For most of the
time, a binary acts just like a single star in a stellar system. The distances between
stars are large compared with the sizes of the stars and even compared with the
sizes of close binary orbits. For a relatively brief moment a binary and a third star
interact strongly, a ‘new’ binary forms, and a ‘new’ third star leaves the scene.
The importance of the process lies in its ability to redistribute energy and angular
momentum efficiently; the population of binaries may become more and more
tightly bound as time and three-body scattering go on, while the population of single
stars may gain speed and become ‘heated’. This will have profound consequences on
the structure and evolution of a star cluster; for example single stars and sometimes
also binaries escape from the cluster; binary orbits may shrink to form contact
binaries, and also triple stars may form where the third body remains bound to
the binary. The end products of the three-body process may appear as sources of
radio jets, X-rays, gamma rays or as other kinds of ‘exotic’ objects (Hut et al.
2003).

These various scenarios can be reproduced by numerical orbit calculations. The
orbits of thousands of stars can be calculated in a simulation of a star cluster.
Even though these simulations have now reached a great level of complication
and trustworthiness (e.g. Heggie and Hut 2003, Aarseth 2003a), it is still useful to
examine the three-body process to see how much is understood from elementary
principles. Together with the simulations of large numbers of bodies one may attain
a deeper understanding of the evolutionary process.

Chapter 7 starts with the discussion of initially strongly interacting three-body
systems. We will learn that such systems have a limited lifetime, and we do not
expect to find very many of them in nature. But they are important in the descrip-
tion of the intermediate state between the impact of a third body on a binary and
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the departure of a ‘new’ third body from a ‘new’ binary. The techniques used in
Chapter 7, assuming a complete reshuffle of the positions and velocities of the three
bodies in the phase space, work surprisingly well.

By ‘work well’ we mean that a large body of numerical orbit calculations can
be described in a statistical sense by simple physical principles. That this should
be so is not at all obvious at the outset. Therefore we devote considerable space
to comparing numerical calculations with the theory. The beauty of it is that once
the theory is established for certain parts of the parameter space, we have good
reasons to expect that it applies more generally. Also we do not need to go back to
calculating millions of orbits when a slightly different astrophysical problem arises
but we can use the theory directly with a fair amount of confidence.

In addition to these practical considerations, it gives the reader a certain satisfac-
tion to learn that simple analytical solutions of the three-body problem exist, even
though only in a statistical sense and for a limited part of the parameter space. It
will also become clear that these are the only solutions of any significance in large
parts of the phase space due to the chaotic nature of the problem.

Chapters 9 and 10 try to cover the remaining parameter space, i.e. when the
binary and the third body are so well separated throughout the interaction that the
principle of complete chaos is not productive. At one extreme there is the very slow
and gentle perturbation of the binary known as the Kozai mechanism. Then only
the binary eccentricity and inclination change periodically while the orbital sizes
are unaffected. At the other extreme we have a high speed intruder which gives the
binary a ‘shock treatment’ during its brief encounter with the binary. In between, a
binary is strongly perturbed at close encounters but is able to maintain its identity
and not break up or exchange members. A stability boundary is derived which tells
us where the perturbation treatment ends and the chaos theory begins.

In this way we can give a rather complete coverage of the astrophysical
three-body problem. As in the case of the chaos theory of Chapters 7 and 8, also
in the perturbation theory of Chapters 9 and 10, a great deal of space is dedicated
to comparing numerical results with the theory. This is necessary since it is not
always obvious, in the absence of exact theory, what approximations should lead to
the best understanding of the experiments. Often we even find that in the final steps
we just have to accept the guidance of the numerical experiments without clear
justification of the theory. This is not because the theories could not be pushed any
further but more because we like to keep the theory at a rather simple level (and it
may appear quite complicated to some readers already as it is). But also we have to
remember that in the general three-body problem with strong interactions no exact
theory exists, and we should not spend too much effort towards this elusive goal.

Throughout the development of the theory we will look at some small astrophys-
ical problems which are easily solved at this stage. In the final chapter a couple of
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larger issues are discussed which require solutions from different parts of the text
as well as other astrophysical information. To give the reader an idea of what sorts
of problems we are dealing with we outline a couple of astrophysical examples in
the next sections.

1.3 Short period comets

The origin of short period comets is one of the oldest three-body problems. Lexell
(1778, 1779) studied the motion of the comet found in 1770 by Messier, and sug-
gested that the orbit had become elliptical with a period of 5.6 years, when the comet
passed close to Jupiter. Later, Laplace (1799–1825, 1805) and Leverrier worked on
the capture hypothesis. Tisserand (1889) and H. A. Newton (1891), among others,
discussed details of the capture process. The idea, already put forward by Lexell,
was that short period comets are created from long period comets which pass near
Jupiter and lose energy during the encounter. Everhart (1969) carried out a major
survey of close encounter orbits between comets and planets using computers. In
spite of all these and later efforts, the origin of the short period comets is still an
open question to a large extent.

There are more than two hundred known short period comets, even though it is
well documented that comets fade away after 102–103 revolutions around the Sun
and that they escape the solar system after 104–105 revolutions (Fig. 1.3). There
must be a source of comets which constantly (or from time to time) replenishes the
population. Two such sources have been suggested: the Oort Cloud of comets and
the Kuiper Belt of asteroids and comets. Sometimes also other source regions, such
as interstellar comets, have been mentioned. The processes which may keep the
short period comet population intact are mostly related to the three-body problem.

The Oort Cloud (Oort 1950) is a collection of as many as 1012 comets loosely
bound to the Solar System. The orbits of the comets are such that they generally
do not enter the planetary region, and their orbits are mainly affected by the Sun,
passing stars, gas clouds and the tidal field of the Galaxy as a whole. As a result of
these influences, there is a more or less steady flux of ‘new’ comets which enter the
planetary system for the first time. The flux may be rather uniform per pericentre
interval (closest approach distance to the Sun, in AU) up to the distance of Jupiter;
beyond that the flux is expected to rise but the difficulty of observing distant comet
passages prevents observational confirmation of this expected trend.

Since we have some idea of the Oort Cloud flux of comets we may ask how much
of this flux is captured to short period orbits and what are the orbital properties of
the captured comets. An Oort Cloud comet comes in a highly eccentric orbit, and in
the absence of planets it would return back to the Oort Cloud in the same elliptical
orbit. But the orbit is influenced by one or more planets, and this influence is likely
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Figure 1.3 Halley’s comet, the most famous periodic comet, photographed in May
13, 1910. The big round object is Venus and the stripes are city lights of Flagstaff.
Image Lowell Observatory.

to change the orbit either to a hyperbolic escape orbit or to a more strongly bound
short period elliptical orbit. Basically we need to solve the three-body problem
consisting of the Sun, a planet and a comet. Since the comet has much smaller
mass than the other two bodies, the problem is restricted only to the question of
the motion of the comet. Generally we may assume that the planet goes around the
Sun in a circular orbit, and remains in this orbit independent of what happens to
the comet. This is an example of the restricted circular three-body problem which
will be discussed in Chapter 5.

It is a straightforward procedure to make use of an orbit integrator, a computer
code which calculates orbits, and to calculate the orbit of an Oort Cloud comet
through the Solar System, past various planets, perhaps through millions of orbital
cycles, until the comet escapes from the Solar System, or until it collides with the
Sun or one of the planets, or until the comet disintegrates. The calculation can be
long but it is possible with modern computers. However, questions remain: how
representative is this orbit and how accurate is the solution? Indeed, we do not know
the exact starting conditions for any Oort Cloud comets and neither can we carry
out the calculation over the orbital time of millions of years without significant loss
of accuracy.

To some extent these problems can be avoided by using the method of sampling.
We take a large sample of orbits with different initial conditions and calculate them
through the necessary period of time. We may then look at observational samples
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and compare them with samples obtained by orbit calculation. In practice we need
millions of orbits in order to get satisfactory statistics of the captured short period
comets. It becomes a major computational challenge.

We can learn quite a lot by studying the interaction of a comet with only one
of the planets. A typical Oort Cloud comet has a high inclination relative to the
plane of the Solar System. It comes from one side of the plane (say, above), dives
through the plane, turns around below the plane, and crosses the plane again. A
strong three-body interaction takes place only if a planet happens to be close to
one of the crossing points at the right time. Most likely no planet is there at all, but
when a close encounter happens, almost always it is only with one planet only at
one of the two crossing points. Therefore we have a three-body problem.

But even then the exact nature of the three-body encounter is unclear. The best
we can do is to develop a statistical theory of how the comet is likely to react to
the presence of the planet close to the crossing point. Öpik (1951) developed such
a theory where the comet is assumed to follow an exact two-body orbit around the
Sun until it comes to the sphere of gravitational influence of the planet. At this
point the comet starts to follow an exact two-body orbit relative to the planet. After
leaving the sphere of influence of the planet, the orbit is again a (different) two-body
orbit around the Sun. A theory along these lines will be discussed in Chapter 6,
together with some more recent work. It is the most basic form of a solution to
the three-body problem. Notice that we will be discussing probabilities; this is the
recurring theme of the solutions of astrophysical three-body problems.

The statistical properties of comets which we will have to confront are primarily
the distribution of their orbital sizes (semi-major axes), their perihelion distances
and the distribution of orbital inclinations relative to the Solar System plane. In
terms of orbital sizes, the comets can be classified as being either Jupiter family
comets (orbital period below 20 years), Halley type comets (period above 20 but
below 200 years) or long period comets (longer periods than 200 years). Oort Cloud
comets have orbital periods in excess of a million years. Within these groups, the
inclination distributions vary (Fig. 1.4). One of the aims of a successful theory of
short period comets is to explain their observed numbers (28 Halley type, 183 Jupiter
family comets; Marsden and Williams 1999) in relation to the rate of comets coming
from the Oort Cloud. Also it should explain how the differences in the inclination
distributions originate.

If it turns out that a decrease in the semi-major axis of a comet is associated
with a decrease in its inclination (and this will be shown in Chapter 6) then we
might propose that comets evolve from Oort Cloud comets to Halley type comets
to Jupiter family comets by successively decreasing the semi-major axis and the
inclination of the orbit. How this works out in detail will be discussed in Chapter 11.
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Figure 1.4 The inclination distributions in three classes of comets: Oort Cloud
comets, the orbits of which agree with random orientations (number proportional
to sin i), Halley type comets which are more often in direct orbits than in retrograde
orbits, and Jupiter family comets which are in direct orbits close to the Solar System
plane.

Another idea which is as old as the Oort Cloud theory is the concept of a disk
of comets left over from the formation of the Solar System. This is usually called
the Kuiper Belt or Edgeworth–Kuiper Belt (Edgeworth 1949, Kuiper 1951). These
comets reside mostly by the orbit of Neptune or beyond (Transneptuneans). Comets
do not develop a tail at this distance from the Sun and they can be observed only if
the nucleus of the comet (the solid body from which the tail originates) is quite large,
greater than about 100 km in diameter. Therefore our knowledge of the comets at the
Kuiper Belt is limited to the very largest bodies among them. By extrapolation it has
been deduced that there may exist as many as 107 ‘ordinary’ comets in the Kuiper
Belt and in its vicinity (Levison and Duncan 1997), even though only somewhat
over 300 very bright ones are known. Some of the Transneptunean comets certainly
approach the Sun at some point in their orbital evolution and become visible by
their bright tails; however, it is difficult to know exactly which comets have this
origin.

The Oort Cloud comets are very loosely bound to the Solar System and therefore
the Oort Cloud may require replenishment. A more tightly bound and dynamically
more robust cloud of comets has been suggested to lie inside the Oort Cloud, the
so-called Inner Oort Cloud (Hills 1981). Numerical simulations of the origin of
the Oort Cloud by ejection of cometary bodies from the region of the outer planets
also suggest the existence of the Inner Oort Cloud (Duncan et al. 1987). Passing
stars and molecular clouds perturb the orbits of the Inner Oort Cloud comets and
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Figure 1.5 In the course of years the components of the binary star Krüger 60 are
seen to orbit their common centre of mass. Image Yerkes Observatory

some of them end up in the Oort Cloud proper. The Inner Oort Cloud is yet another
potential source region for short period comets.

1.4 Binary stars

About half of the stars in our Galactic neighbourhood are binary stars (Fig. 1.5).
Binary stars have been studied since the eighteenth century when William Herschel
discovered that stars may appear in physical pairs. Combined with Newton’s laws
of gravity and dynamics, binary stars have been used in the studies of stellar masses,
radii and other properties. Yet even today, we do not have a full understanding of
the origin of even the most basic properties of the binaries.

The study of binary stars is an interesting field in its own right but it also has
wider implications. Binaries appear as mass points when seen from far away, but
in close encounters with single stars or other binaries their internal motions may
release or absorb energy. Therefore they behave somewhat similarly to molecules
in gas dynamics. The role of binaries is very crucial in understanding the dynamics
of stellar systems.

Binaries may have very different semi-major axes and orbital eccentricities,
ranging from two stars in contact with each other and in a circular orbit, to a
wide and typically eccentric binary with a semi-major axis of the order of 0.1 pc.
Corresponding orbital periods range from a fraction of a day to millions of years.
One of the basic questions in binary star studies is to understand these distributions:
the distributions of binary periods, of binary orbit eccentricities and of mass ratios
of the binary components.
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Figure 1.6 The distribution of binary star periods P , plotted per logarithmic inter-
val d log P (Abt 1977). The horizontal dashed line represents the so-called Öpik
law.

Because of the wide range of physical sizes of binary systems, studies of their
distributions require different methods on different scales. Various selection effects
also complicate these studies. When all the studies on different scales and with
corrections for selection effects have been combined, the following results have
been obtained. The period distribution is flat over five orders of magnitude when
plotted per logarithmic interval of the period P (Fig. 1.6; Abt 1977). A distribution of
this type is sometimes called ‘scale free’. Written in the usual way the distribution is

f (P) dP ∝ P−1 dP (1.1)

which corresponds to

f (|EB |) d|EB | ∝ |EB |−1 d|EB | (1.2)

in terms of the binary orbital energy EB . This form of binary energy distribution
is known as Öpik’s law (Öpik 1924). One of our aims is to explain the origin of
this law; we will come back to it in Chapter 11.

The distribution of orbital eccentricities e depends on the period: short period
orbits have low eccentricities while long period orbits are more eccentric with the
weight of the distribution at the high end of the range of e (Fig. 1.7; Duquennoy
and Mayor 1991). In the latter case the data are consistent with

f (e) de = 2e de, (1.3)

an equilibrium distribution in stellar dynamics (Jeans 1919, Ambartsumian 1937).
Short period orbits are of low eccentricity (Campbell 1910). For contact binaries it
is easy to understand why the orbit is circular: tidal friction between the two stars



14 Astrophysics and the three-body problem

0

4

8

12

0 0.3 0.6 0.9

N
um

be
r

e

Binary eccentricities

P < 3 yr

P > 3 yr

Figure 1.7 The observed distribution of eccentricities in a sample of binary stars.
The data for binaries of longer orbital periods (over 3 years) are shown by points
with error bars while the data for binaries of short orbital periods (less than 3 years)
are indicated by the broken line (Duquennoy and Mayor 1991). The straight dotted
line represents a possible interpretation of the long orbital period data.

operates most strongly during the pericentre of the orbit, when the two stars are
closest to each other. The resulting loss of orbital speed at the pericentre leads to
a rather circular orbit. But the low eccentricity orbits are dominant even among
binaries whose orbital size is as large as one astronomical unit (AU), the distance
between the Earth and the Sun. Tidal friction does not play any role at these sepa-
rations since the radius of the Sun (and a typical main sequence star) is only about
0.005 AU. We have to look for other explanations for the different eccentricity
distributions.

The mass ratio distribution depends on the type of the primary star (Abt 1983).
The most massive stars (primaries of spectral type O) tend to be in rather equal
mass pairs, m2/m1 ∼> 0.3 while the reverse is true for less massive upper main
sequence stars. For the low mass, solar type primaries the mass ratio peaks at about
m2/m1 = 0.25 (Duquennoy and Mayor 1991).

To some extent the differences can be understood by the form of the mass dis-
tribution function for single stars:

f (m) ∝ m−α (1.4)

where α = 2.35 over most of the range (Salpeter 1955). If the more massive com-
ponent is taken to be m1 = 1, then the distribution for m2 should follow Eq. (1.4),
and the same should also apply to the mass ratio m = m2/m1. However, obser-
vations give a less steep function. For example, Kuiper (1935a, b) found that
f (m) = 2(1 + m)−2 gives a good fit to data on close binaries while Trimble (1990)
prefers f (m) ∝ m−1. Thus the masses of the binary components are more equal
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Figure 1.8 The distribution of the mass ratio m2/m1 (m2 < m1) in a B spectral
type binary star sample (points with error bars; Evans 1995). In comparison, the
dashed line gives the expected distribution if the companion of the B-type star has
been picked at random among ordinary stars lighter than the primary.

than we would predict by picking a companion for the primary at random from the
single star mass function (Fig. 1.8; Evans 1995).

On the other hand, the mass function for low mass stars (below the mass of the
Sun) has a lower power-law index α � 1.25. Therefore the mass ratio distribution is
also expected to be less steep, f (m) ∝ m−1.25. This agrees with the observed flatter
distribution of m for solar type primaries. Quantitative comparisons are difficult
because the single star mass function below about 0.5 solar mass is poorly known.

At the other end, the mass function for O-type stars is steeper than Eq. (1.4)
with α = 2.35. A power-law index α = 3.2 may be used at the high mass end,
above m � 10M� (Mihalas and Binney 1981). This leads to an even steeper mass
ratio distribution, in contrast with observations which go in the opposite direction.
Thus there is much more to the mass ratio distribution than simply picking a pair at
random. Even if the pairs might have formed like this initially, there has obviously
been strong evolution which has modified the mass ratios. We will discuss the
three-body process in Chapter 11 as a possible cause of this evolution.

1.5 Groups of galaxies

Just like stars, galaxies also appear in binaries, triples, quadruples and other small
groups, as well as in large groups and clusters (Fig. 1.9). Binaries and their
interactions with third galaxies may have consequences for the evolution of these
systems. There is also important information about galaxies themselves which



16 Astrophysics and the three-body problem

Figure 1.9 Coma Cluster of galaxies. Picture taken with the KPNO 4-m Mayall
Telescope. Image NOAO/AURA/NSF.

requires an understanding of the multiple systems. First and foremost, the total
masses of galaxies, including their dark halos, are best derived from the study of
multiple systems.

The method which is commonly used is to assume that the multiple system
is in a bound state, i.e. that none of the members is currently escaping from the
grouping. In addition, some assumptions are made about the nature of the orbits
(e.g. circular, radial or intermediate) as well as about projections onto the plane of
the sky. With these assumptions it is possible to connect observed properties, i.e.
projected separations and radial velocities with inferred quantities such as the total
mass of the system.

The total amount of light emitted by all the member galaxies is also measurable.
Then the calculated mass (in solar mass) may be divided by the measured light
output (in solar luminosity), and the resulting number is called the mass-to-light
ratio. It is usually assumed that it is rather narrowly confined to a value around
30–50, at least for spiral galaxies. It is still an unsolved problem in astronomy as to
how frequently galaxies in a complete volume sample fall into this range of mass-to-
light ratio, and to what extent there is variation from one class of galaxies to another.
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The existence of binary galaxies complicates matters. Their interaction with
third galaxies may lead to escape orbits. It is very difficult to infer observationally
whether a particular galaxy is in an escape orbit. The natural assumption is that
any galaxy associated with a group is bound to it; this assumption overestimates
the true mass by a factor of two or so in cases where there are escapers among the
galaxies. This will be discussed in the final chapter. There we will also derive the
maximum speed of escape based on the three-body theory.

1.6 Binary black holes

Black holes represent a form of matter which has collapsed on itself, in principle
into a single point. In practice, the event horizon at the Schwarzschild radius Rg,
defined as

Rg = 2G M

c2
, (1.5)

where M is the mass of the body and c the speed of light, represents the radius of
the body. In a non-rotating black hole, this radius separates the internal space of the
black hole from the outside world; no communication is possible from the inside
of the Schwarzschild radius to the outside.

For many purposes we may treat black holes as mass points, and calculate their
motions relative to each other as we do for ordinary bodies in Newtonian physics.
Close to the Schwarzschild radius the dynamics differs very much from Newtonian
dynamics, but far away, say at 100Rg, only small corrections to Newtonian theory
are required. In this chapter and in the following we will only consider the latter
situations.

There are black holes of stellar masses, and supermassive black holes of millions
of solar masses. These we are fairly certain of. There may be a whole mass range
of black holes, but for various reasons we tend to observe only these two extremes.
In this book we will only discuss the supermassive variety.

Supermassive black holes have been identified in the centres of many galaxies.
Possibly every galaxy of sufficient size has or has had a supermassive black hole
in its centre. Black holes are surrounded by disks of gas, and associated with them
are phenomena which sometimes produce extremely bright radiation. For example,
jets of relativistic particles are thought to flow out in two opposite directions, along
the rotation axis of the disk. These jets may appear very bright, especially when
seen end-on.

When galaxies merge, their central supermassive black holes also approach each
other, but generally do not merge. They form a binary system of supermassive black
holes. Eventually there may also be a merger of the binary, but typically the time
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Figure 1.10 Radio galaxy Cygnus A, as seen in radio waves. The two bright
emission regions straddle the galaxy which is centred on the spot of radio emission
at the centre of the picture. Image courtesy NRAO/AUI.

scale is very long, of the order of the current age of the Universe (Hubble time).
Occasionally the binary merger may happen in a shorter time scale through an
increase of eccentricity in the binary, and a collision of black holes at the pericentre
of the binary orbit (Aarseth 2003b). The problem of calculating this time scale will
be discussed in the final chapter using three-body theory.

Multiple mergers of galaxies also take place, and these may produce triple or
quadruple supermassive black hole systems. The evolution of the triple systems
is also discussed in the last chapter. Then we will find that supermassive black
holes should occasionally fly out of their parent galaxies, or sometimes remain as
oscillators in the galaxy. These are processes not well understood at present since
no unique identification of a supermassive black hole outside a galaxy has yet been
made. However, the currently popular �CDM cosmology leads us to expect that
the black hole escape process was extremely common in the early universe when
large galaxies were assembled from their small progenitors.

Supermassive black holes are most likely associated with strong radio sources,
radio galaxies and quasars. Radio galaxies typically have a double lobe structure
where the regions of strongest radio emission lie on diametrically opposite sides of
the galaxy (Fig. 1.10). Two categories of theories are usually advanced to explain
the double radio source phenomenon: beam theory (Blandford and Rees 1974) and
slingshot theory (Saslaw et al. 1974). According to the former theory, supermassive
black holes remain stationary in the centres of galaxies, or at most move around
each other in binary orbits, and send out beams of relativistic plasma in two oppo-
sitely directed beams. These beams supposedly reach outside the galaxy and cause
radio emission there. In the slingshot model supermassive black holes themselves
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are thrown out of the centre of the galaxy via the three-body process. Due to con-
servation of linear momentum, a single black hole escapes in one direction and the
binary in the opposite direction from the galaxy, and each produces radio emission
along its escape path.

As long as no supermassive black holes have been directly observed or their
existence in the radio lobes has not been disproven, it is difficult to verify either
theory. However, there are indirect ways to do so. The most clear-cut test is related
to the escape direction of radio lobes. In the beam theory the direction is along the
rotational axis of the disk of gas (the accretion disk) which surrounds the black hole.
Even though the disk usually cannot be imaged directly, it is a fair assumption that
it arises from a more extended disk of gas in the galaxy via accretion. Therefore the
observed orientation of the extended gas in the galaxy should also give information
about the accretion disk of the central black hole. The projection of a circular disk
in the sky is an ellipse; the direction of the minor axis of the ellipse shows the
projection of the axis of symmetry of the disk.

Another way to find the orientation of the accretion disk is to observe small
scale jets which emanate at right angles to the disk. Again the jet line shows the
projection of the axis of symmetry in the sky. In the beam theory the radio lobes
should lie further along the jet line, and the projected angle in the sky between the
jet line and the double lobe radio axis should be zero. Thus the radio axis should
be in the direction of the minor axis of the image of the extended gas.

It is also possible that the distribution of stars in the galaxy is spheroidal and
flattened along the same axis as the gas disk. This is certainly true of spiral galaxies,
but may also pertain to elliptical galaxies which are hosts of double radio sources.
The alignment of the gas disk and the stellar disk could have its origin in mergers of
galaxies: the angular momentum of both components should be strongly influenced
by the orbital angular momentum of the binary galaxy which has merged.

In contrast to the beam theory, the slingshot theory predicts the escape of radio
lobes along or close to the central plane of the galaxy, and perpendicular to the
minor axis of the gas distribution and perpendicular also to the jet directions. In
Chapter 7 we will discuss the escape directions in the three-body problem in more
detail, and also compare them with observations.
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Newtonian mechanics

This chapter introduces the basic concepts of Newtonian mechanics. We will empha-
size the areas which are most useful in the three-body problem, and also familiarise
ourselves with a system of units and scaling laws. The calculation of orbits using
Newton’s laws is a central theme of this book, and therefore a brief introduction to
the methods follows. It is not the purpose of this work to teach the latest orbit cal-
culation techniques; therefore only a brief introduction is given. Finally, we discuss
the connection of Newtonian mechanics to chaos. It may come as a surprise that
the introduction of just one more body to the well behaved two-body system brings
about a chaotic, unpredictable dynamical system. This was realised by Poincaré
well before the concept of deterministic chaos became a popular topic.

2.1 Newton’s laws

We begin with the fundamental laws of mechanics, as given by Newton in his
Principia in 1687, although in a more modern form.

First law If there are no external forces, an object will maintain its state of motion,
i.e. it will stay at rest or continue rectilinear motion at constant velocity.

Second law The rate of change of the momentum of an object is proportional to
the applied force. If the force is F, momentum p, mass m and the radius vector r ,
then

F = ṗ = d

dt
(mṙ ). (2.1)

Third law If a body A exerts a force F on a body B, the body B will exert a force
−F on body A.

Following these fundamental laws Newton presents a corollary, which essentially
states that the forces acting on a body can be evaluated independently of each other.

20
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In more modern language this means that in the presence of several forces F1, F2,
. . . , Fn the body will behave as if there were only a single force F, which is the
vector sum of the individual forces: F = F1 + F2 + · · · + Fn .

These laws determine how objects will move in the presence of forces. Another
law was discovered by Newton to provide the force:

Law of gravity If the bodies A and B have masses m A and m B , respectively, and
if their mutual distance is r , A will act on B with a force that is directed towards A
and has a magnitude

GmAmB/r2, (2.2)

where G is a constant, the constant of gravity, the value of which depends on the
units chosen.

When we calculate the gravitational force or acceleration due to an object, or
the effect of gravity on a body, we assume that all the mass is concentrated in the
centre of mass, i.e. the objects are pointlike. This is valid also for real bodies if they
are spherically symmetric, which is true for many celestial objects.

This is almost all one needs to know about physics; from here on, mainly math-
ematical methods are required.

2.2 Inertial coordinate system

Vectors and rectilinear motions appearing in Newton’s laws are geometric entities,
independent of any coordinate frames. In practice, however, our calculations are
carried out in some coordinate frame. If an object is at rest, then none of its co-
ordinates changes with time. Since things look different in different frames, the
definition of the coordinate frame is fundamental.

An inertial frame is a coordinate frame in which Newton’s laws hold true. If
we had an absolute frame of the whole universe, at least all the frames moving at
constant velocity with respect to this absolute frame would be inertial. The concept
of such an absolute frame has, however, turned out to be rather problematic. Yet
we can define that a frame is inertial if experiments show that Newton’s laws are
valid in that frame.

Often the situation depends on the required accuracy. An observer on the surface
of the Earth is in circular motion around the Earth’s axis, the Earth orbits the Sun,
and the Sun orbits the centre of the Milky Way galaxy. Accelerations are involved
in all these motions, and thus the frames moving with the Earth or the Sun are not
inertial. Yet we can use them as if they were. The deviation from the inertial frame
has to be taken into account only if (1) we are interested in such a long period of
time that the curvature of the trajectory becomes evident, or (2) we require such a
high accuracy that the accelerations affect the results.
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2.3 Equations of motion for N bodies

Assume we have n point masses with radius vectors r i and masses mi . The total
mass of the system is

M =
n∑

i=1

mi (2.3)

and the radius vector R of the centre of mass

R = 1

M

(
n∑

i=1

mir i

)
. (2.4)

The gravitational force affecting the object i is

Fi = −G
n∑

j=1, j �=i

mi m j
1

(r i − r j )2

r i − r j

|r i − r j |

= −G
n∑

j=1, j �=i

mi m j
r i − r j

|r i − r j |3 .

(2.5)

From Newton’s second law

Fi = d

dt
(mi ṙ i ) = mi r̈ i . (2.6)

Equating these two forces and dividing by mi the equation of motion of the object
i becomes:

r̈ i = −G
n∑

j=1, j �=i

m j
r i j

r3
i j

, (2.7)

where

r i j = r i − r j ,

ri j = |r i − r j |.
(2.8)

In terms of rectangular xyz coordinates and basis vectors êx , êy and êz , the
position of mi is

r i = xi êx + yi êy + zi êz. (2.9)

Defining the gradient operator ∇i as:

∇i = êx
∂

∂xi
+ êy

∂

∂ yi
+ êz

∂

∂zi
, (2.10)



2.3 Equations of motion for N bodies 23

the potential energy V of our system is

V = − G
n∑

j=1

n∑
k= j+1

m j mk

r jk

= − 1

2
G

n∑
j=1

n∑
k=1,k �= j

m j mk

r jk
,

(2.11)

and

∇i V = −1

2
G

n∑
j=1

n∑
k=1,k �= j

m j mk∇i

(
1

r jk

)
.

Since r jk depends only on the coordinates of the bodies j and k, only the terms
with j = i or k = i are non-zero:

∇i V = − 1

2
G

n∑
k=1,k �=i

mi mk∇i

(
1

rik

)
− 1

2
G

n∑
j=1, j �=i

m j mi∇i

(
1

r ji

)

= − G
n∑

j=1, j �=i

m j mi∇i

(
1

ri j

)
,

where

∇i

(
1

ri j

)
= ∇i ((xi − x j )

2 + (yi − y j )
2 + (zi − z j )

2)−1/2

= − (xi − x j )êx + (yi − y j )êy + (zi − z j )êz

r3
i j

= −r i j

r3
i j

.

Then immediately

∇i V = G
n∑

j=1, j �=i

mi m j
r i j

r3
i j

. (2.12)

Comparing this with the equation of motion (2.7) one may write

mi r̈ i = −∇i V, i = 1, . . . , n, (2.13)

where

V = −1

2
G

n∑
j=1

n∑
k=1,k �= j

m j mk

r jk
. (2.14)
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2.4 Gravitational potential

When studying the effect of a system on an external test body, the potential instead
of the potential energy is often used. The potential

U (r ) = −G
n∑

j=1

m j∣∣r − r j

∣∣ (2.15)

has the dimension of energy per unit mass, and the potential energy of a mass m at
r is U (r )m. The equation of motion of this object is

r̈ = −∇U. (2.16)

A point mass can be replaced by a continuous mass distribution, the density of
which at r is denoted by ρ(r ). The potential at r0 due to this mass distribution is

U (r0) = −G
∫

ρ(r ) dV

|r − r0| , (2.17)

where dV is the volume element and the integration is extended over the whole
mass distribution. Evaluation of the potential of an arbitrary object often leads to
complicated integrals.

Example 2.1 Find the potential of a homogeneous disk with radius R at a distance
z along the axis of the disk.

Let the surface density of the disk be ρ (kg/m2). Then its total mass is ρπ R2. In
cylindrical coordinates (r, φ) the potential at a distance z is

U (z) = −G
∫ R

0
dr
∫ 2π

0

ρr dφ√
z2 + r2

= −2πGρ

∫ R

0

r dr√
z2 + r2

= −2πGρ

∣∣∣∣
R

0

√
z2 + r2

= −2πGρ
(√

z2 + R2 −
√

z2
)

= −2πGρ
R2

√
z2 + R2 + z

= −G M

z

2√
1 + (R/z)2 + 1

.
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If the distance z is much greater than the diameter of the disk, we can replace the
square root with the two first terms of its Taylor expansion:

U (z) ≈ −G M

z

1

1 + 1
4 (R/z)2

≈ −G M

z

[
1 − 1

4

(
R

z

)2
]

.

The potential of a point mass would be −G M/z. It is the shape of the mass
distribution that gives rise to the second term. Thus we cannot replace such an
object with a point mass.

The gradient of the potential gives the force (per unit mass). In this case only the
component parallel to the z axis remains. Using the previous series approximation,

Fz = −dU

dz
≈ G M

z2

[
1 − 3

4

(
R

z

)2
]

.

Example 2.2 Potential of an infinite plane.
In the previous example we let the radius R of the disk grow without limit. The

potential obviously approaches infinity. However, this does not necessarily mean
that the force will also become infinite. When R → ∞ in the expression of the
potential U (z), U (z) → −2πGρ(R − z) and we get F = −2πGρ. This does not
depend on the distance at all. The gravitational attraction of an infinite plane is
everywhere constant and proportional to the density of the disk. For example, when
calculating stellar motions with respect to the galactic plane we can approximate
the galaxy as an infinite plane to get very simple equations of motion.

2.5 Constants of motion

The equation of motion of a body is a second order, vector differential equation. Thus
the total solution involves six integration constants, which in celestial mechanics
are usually called the integrals of the equation of motion. The general solution of
n bodies thus requires 6n integrals. Some of them can be easily evaluated.

Summing all of the equations of motion gives:

n∑
i=1

mi r̈ i = −G
n∑

i=1

n∑
j=1, j �=i

mi m j
r i j

r3
i j

.
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The sum on the right hand side consists of pairs (r i − r j )/r3
i j and (r j − r i )/r3

j i .
These terms cancel each other, and hence

n∑
i=1

mi r̈ i = 0.

We integrate this twice with respect to time and get

n∑
i=1

mir i = at + b, (2.18)

where a and b are constant vectors. Comparison with the definition of the centre
of mass (2.4) shows that the sum on the left hand side is M R. Thus we have

R = at + b
M

. (2.19)

Thus the centre of mass or barycentre moves at constant velocity along a straight
line. The obvious consequence of this is that the barycentric coordinate frame is an
inertial frame.

The total angular momentum of the system is

L =
n∑

i=1

mir i × ṙ i . (2.20)

The time derivative of this is

L̇ = d

dt

(
n∑

i=1

mir i × ṙ i

)

=
n∑

i=1

(mi ṙ i × ṙ i ) +
n∑

i=1

(mir i × r̈ i )

= −G
n∑

i=1

n∑
j=1, j �=i

mi m j
r i × (r i − r j )

r3
i j

= G
n∑

i=1

n∑
j=1, j �=i

mi m j
r i × r j

r3
i j

.

Again the terms on the right hand side cancel each other pairwise, because the
vector product is anticommutative. Thus

L̇ = 0, (2.21)

i.e. the total angular momentum is constant.
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Finally the total energy of the system is derived. Taking the scalar product of the
equation of motion of the i th body and ṙ i , and adding all equations, one obtains:

n∑
i=1

mi r̈ i · ṙ i = −
n∑

i=1

ṙ i · ∇i V

= −
n∑

i=1

(
ẋi

∂V

∂xi
+ ẏi

∂V

∂ yi
+ żi

∂V

∂zi

)

= −dV

dt
.

Integration with respect to time gives

1

2

n∑
i=1

mi ṙ i · ṙ i = −V + E, (2.22)

where E is a constant of integration. The left hand side of the equation gives the
kinetic energy of the system

T = 1

2

n∑
i=1

miv
2
i , (2.23)

where vi is the speed of object i . Thus Eq. (2.22) can be written as

E = T + V, (2.24)

which is the familiar law of total energy conservation.
Thus far we have found ten integrals for the equations of motion: vectors a and

b describing the trajectory of the centre of mass, the total angular momentum L,
and the total energy E . For the complete solution, 6n − 10 additional constants
are required. The missing constants are easily found when n = 2. When n > 2,
no additional independent constants are known. In fact, it has been shown that
there are no additional independent constants that are algebraic functions of time,
coordinates and velocities.

2.6 The virial theorem

In addition to constants of motion, statistical properties can be derived. The ‘virial’
of the system is defined as

A =
n∑

i=1

mir i · ṙ i . (2.25)
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The time derivative of this is

Ȧ =
n∑

i=1

(mi ṙ i · ṙ i + mi r̈ i · r i )

= 2T +
n∑

i=1

Fi · r i .

Consider the time average in the interval t ∈ [0, τ ]. Denoting this average value
by 〈〉,

〈
Ȧ
〉 = 1

τ

∫ τ

0
Ȧ dt = 〈2T 〉 +

〈
n∑

i=1

Fi · r i

〉
. (2.26)

If the system remains bounded, its virial cannot increase without limit. Thus the
integral in (2.26) remains finite. When the length of the interval increases, 〈 Ȧ〉
approaches zero, and thus

2 〈T 〉 +
〈

n∑
i=1

Fi · r i

〉
= 0. (2.27)

This is the virial theorem in its general form. If the forces Fi are due to mutual
gravitational forces only, the sum becomes

n∑
i=1

Fi · r i = −G
n∑

i=1

n∑
j=1, j �=i

mi m j
r i − r j

r3
i j

· r i .

It is possible to write the double sum using only the vector differences r i − r j . We
start by writing the sum twice but by changing the order of the summation indices
i and j . We add the two identical sums and divide by two:

n∑
i=1

Fi · r i

= −1

2
G

[
n∑

i=1

n∑
j=1, j �=i

(
mi m j

r i − r j

r3
i j

· r i + m j mi
r j − r i

r3
j i

· r j

)]

= −1

2
G

n∑
i=1

n∑
j=1, j �=i

mi m j
r i − r j

r3
i j

· (r i − r j )

= −1

2
G

n∑
i=1

n∑
j=1, j �=i

mi m j

ri j
.

The double sum
∑n

i=1

∑n
j=1, where i �= j , gives every term twice, due to the

symmetry relative to interchange between i and j . In order to have every term only
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once, the latter sum should start from j = i + 1. We make this change and multiply
the above expression by two:

n∑
i=1

Fi · r i = −G
n∑

i=1

n∑
j=i+1

mi m j

ri j
= V .

Thus

〈T 〉 = −1

2
〈V 〉 . (2.28)

The virial theorem (2.28) can be used to study, for example, the stability of
clusters of stars. The kinetic energy can be determined from the velocity dispersion
and the potential energy from the mass distribution derived from the brightness of
the objects. If the kinetic energy is much higher than the average value given by the
virial theorem, the system is unstable. The virial theorem indicates that clusters of
galaxies should be unstable, which contradicts observational evidence about their
stability. This is one reason to believe that such systems must contain large amounts
of dark matter.

2.7 The Lagrange and Jacobi forms of the equations of motion

For three bodies, Eq. (2.7) gives us

r̈1 = −G

(
m2

r12

r3
12

+ m3
r13

r3
13

)
(2.29)

r̈2 = −G

(
m3

r23

r3
23

+ m1
r21

r3
21

)
. (2.30)

In the Lagrangian formulation of the equations of motion the coordinate dif-
ferences are used instead of the coordinates themselves. The acceleration between
bodies 1 and 2 is obtained by subtracting (2.30) from (2.29):

r̈12 = −G

[
(m2 + m1)

r12

r3
12

+ m3

(
r13

r3
13

+ r32

r3
32

)]

= −G

[
M

r12

r3
12

+ m3

(
r13

r3
13

+ r32

r3
32

+ r21

r3
21

)]

= G

(
m3W − M

r12

r3
12

)
,

(2.31)

where

W = r12

r3
12

+ r23

r3
23

+ r31

r3
31

. (2.32)
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1

2
3

r

rB r1

r3
r31

R3

Figure 2.1 Coordinates of the Jacobi system: the bodies 1 and 2 form a binary
while the third body (3) is more distant.

The corresponding equations for the acceleration between bodies 2 and 3 as well
between bodies 3 and 1 are obtained from (2.31) by changing the subscripts ac-
cordingly.

In the Jacobi system of coordinates, the three-body system is considered to be
composed of two parts: a clearly defined binary, and a somewhat distant third body
(Fig. 2.1). The centre of mass of the binary is used as a reference point whose
position is r B . The relative position vector of the binary is r21 = r . By definition
of the centre of mass (Eq. (2.4))

r B = 1

m1 + m2
(m1r1 + m2r2)

= m1

m1 + m2
r1 + m2

m1 + m2
r2 + m2

m1 + m2
r1 − m2

m1 + m2
r1

= r1 + m2

m1 + m2
r

(2.33)

or, alternatively,

r B = m1

m1 + m2
r1 + m2

m1 + m2
r2 + m1

m1 + m2
r2 − m1

m1 + m2
r2

= r2 − m1

m1 + m2
r .

(2.34)

Let us call the position vector of body 3 relative to the centre of mass R3 = r3 − r B .
Then

r31 = r3 − r1 = R3 + r B − r1 = R3 + m2

m1 + m2
r ,

r32 = r3 − r2 = R3 + r B − r2 = R3 − m1

m1 + m2
r .

(2.35)
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Also

m1

m1 + m2
r31 + m2

m1 + m2
r32

=
(

m1

m1 + m2
+ m2

m1 + m2

)
R3 +

(
m1m2

(m1 + m2)2
− m1m2

(m1 + m2)2

)
r

= R3. (2.36)

Using Eqs. (2.31) and (2.36), the equations of motion are:

r̈ = −G

[
(m1 + m2)

r
r3

+ m3

(
r31

r3
31

− r32

r3
32

)]
(2.37)

and

R̈3 = m1

m1 + m2
r̈31 + m2

m1 + m2
r̈32

= G

[
m2

m1

m1 + m2
W − M

m1

m1 + m2

r31

r3
31

+ m1
m2

m1 + m2
(−W) − M

m2

m1 + m2

r32

r3
32

]

= − G M

(
m1

m1 + m2

r31

r3
31

+ m2

m1 + m2

r32

r3
32

)
.

(2.38)

If r � R3, r31 ≈ r32 ≈ R3. Then the equations of motion (2.37) and (2.38) are
simply

r̈ = −G(m1 + m2)
r
r3

, (2.39)

and

R̈3 = −G M
R3

R3
3

. (2.40)

These are two separate two-body equations of motion the solutions of which will
be discussed in the next chapter. The solutions are Keplerian orbits, an inner orbit
(Eq. (2.39)) and an outer orbit (Eq. (2.40)). As Eqs. (2.39) and (2.40) are not exact,
one is really dealing with two perturbed Keplerian orbits.

2.8 Constants of motion in the three-body problem

The angular momentum for a three-body system is (Eq. (2.20))

L = m1r1 × ṙ1 + m2r2 × ṙ2 + m3r3 × ṙ3. (2.41)
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In the Lagrangian form the angular momentum in the centre of mass coordinate
system reads

L = m1m2m3

M

(
r12 × ṙ12

m3
+ r23 × ṙ23

m1
+ r31 × ṙ31

m2

)
(2.42)

and in the Jacobi form

L = M(r × ṙ ) + m(R3 × Ṙ3) (2.43)

where M and m are the reduced masses:

M = m1m2

m1 + m2
,

m = m3(m1 + m2)

M

(2.44)

(Problem 2.5).
The plane through the centre of mass and perpendicular to L is called the invari-

able plane. When L = 0, Eq. (2.43) tells us that the motion is confined to a plane
which contains all four vectors r , ṙ , R3 and Ṙ3.

The energy integral for the three-body problem is

E = 1

2

(
m1v

2
1 + m2v

2
2 + m3v

2
3

)
− G

(
m1m2

r21
+ m1m3

r13
+ m2m3

r23

)
.

(2.45)

The corresponding equations in the Lagrangian and Jacobi forms are

E = m1m2m3

M

[
1

2

(
v2

23

m1
+ v2

31

m2
+ v2

12

m3

)

− G M

(
1

m3r21
+ 1

m2r13
+ 1

m1r23

)] (2.46)

and

E = 1

2

(Mv2 + mV 2
3

)− G

(
m1m2

r
+ m1m3

r31
+ m2m3

r23

)
, (2.47)

respectively, where v = |ṙ | and V3 = |Ṙ3| (Problem 2.6).

2.9 Moment of inertia

In the centre-of-mass coordinate system, the moment of inertia of a three-body
system is

I = m1r2
1 + m2r2

2 + m3r2
3 . (2.48)
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In the Lagrangian form it becomes

I = m1m2m3

M

(
r2

21

m3
+ r2

13

m2
+ r2

32

m1

)
, (2.49)

and in the Jacobi form

I = Mr2 + m R2
3 (2.50)

(Problem 2.7).
Differentiating the moment of inertia twice with respect to time,

İ = 2m1r1 · ṙ1 + 2m2r2 · ṙ2 + 2m3r3 · ṙ3,

Ï = 2m1
(
v2

1 + r1 · r̈1
)+ 2m2

(
v2

2 + r2 · r̈2
)+ 2m3

(
v2

3 + r3 · r̈3
)

from which it follows that

1

2
Ï = 2T + V = 2E − V (2.51)

(Problem 2.8). Equation (2.51) is known as the Lagrange–Jacobi identity.
The moment of inertia is a measure of compactness of the three-body system, in

the sense that the more compact the system, the smaller is the moment of inertia.
When the moment of inertia increases, a greater and greater sphere is required to
surround the system. When in addition Ï > 0, the bounding sphere increases at an
accelerated pace. In practice, Ï > 0 often means the escape of one body from the
other two.

In the evolution of a three-body system there are periods when 〈 Ï 〉 ≈ 0. During
those periods the system is bounded in a relatively small volume, and the virial
theorem (Eq. (2.28)) is approximately satisfied. From numerical orbit calculations
(see Fig. 1.2) the potential energy V is known to fluctuate a great deal, and since
E is a constant in Eq. (2.51), Ï must fluctuate on either side of zero. Sooner or
later I goes through a deep minimum after which Ï remains positive over a period
which is sufficiently long to permit an escape of one of the bodies. Over that period,
the time averages of T and V satisfy

〈2T 〉 > 〈−V 〉 . (2.52)

Later, when the escape velocity of the third body Ṙ3 asymptotically approaches
a constant value, Eq. (2.28) is satisfied again. Therefore the general behaviour
of the moment of inertia I in the three-body systems, as revealed by numerical
orbit calculations, together with the Lagrange–Jacobi identity, clearly leaves open
the possibility of an escape in the three-body problem. It does not prove that an
escape must happen, and indeed not every minimum of I leads to an escape, but
when the possibility of escape is offered often enough, it is easy to believe that the
evolution of a three-body system ends in an escape of one of the bodies, just as in
the Pythagorean problem (Fig. 1.2).
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2.10 Scaling of the three-body problem

One of the nice features of the solutions of the three-body problem, as well as the
N -body problem, is that the solutions can be freely scaled from one physical system
to another. For example, the Pythagorean problem could represent the motions of
three stars, of 3, 4 and 5 solar masses, starting from mutual separations of 3, 4 and 5
parsecs from each other, or three isolated planets of 3, 4 and 5 Earth masses, starting
from 3, 4 and 5 AU (astronomical units) apart. It can be easily shown (Problem 2.9)
that if r1(t), r2(t) and r3(t) represent the solution (orbits) of a three-body problem,
and k is a real number, then also k2r1(t), k2r2(t) and k2r3(t) is a solution of the
same problem, as long as the time t is scaled as k3. In the new solution the velocity
v scales as k2/k3 = k−1, the energy E scales as v2, i.e. as k−2, and the angular
momentum L scales as r × v , i.e. as k2k−1 = k. The product E L2 is scale free, a
fact which will be used in the following to normalise the angular momenta.

2.11 Integration of orbits

It is generally possible to calculate the orbits in N -body systems by using a com-
puter. Here, a brief outline of the principles commonly used is given (Aarseth 1971).
There are numerous methods in contemporary use, but the details are beyond the
scope of this book. Good expositions of the latest methods are available for example
in Aarseth (2003a). Usually the orbit calculation procedure is referred to as integra-
tion of orbits. To calculate the orbits, Eq. (2.7) is to be solved for all bodies in the
system. As long as the current positions of the bodies are known, the accelerations
at that moment are given by the solutions of Eq. (2.7). If the current velocities are
also known, the motions at that moment are fully specified. The new position r1 is
obtained from the current position r after a small time step �t by the Taylor series

r1 = r + ṙ�t + 1

2
F�t2 + 1

6
Ḟ�t3 + 1

24
F̈�t4 + · · ·. (2.53)

Here we have written F = r̈ . The derivatives Ḟ and F̈ are obtained from Eq. (2.7)
by differentiation:

Ḟ = −G
n∑

j=1, j �=i

m j

[
ṙ i j

r3
i j

− 3
r i j (r i j · ṙ i j )

r5
i j

]
,

F̈ = −G
n∑

j=1, j �=i

m j

(
r̈ i j

r3
i j

− 6
ṙ i j (r i j · ṙ i j )

r5
i j

+ 3
r i j

r5
i j

[
5

(r i j · ṙ i j )2

r2
i j

− ṙ i j · ṙ i j − r i j · r̈ i j

])
.

(2.54)
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Similarly, the new value of the velocity ṙ1 is obtained from

ṙ1 = ṙ + F �t + 1

2
Ḟ�t2 + 1

6
F̈�t3 + · · ·. (2.55)

By repeating the short time step for all of the bodies we may hope to calculate the
time evolution of the whole system.

There are obvious problems with this scheme. Complicated calculations are car-
ried out at every time step which consume computer time and which cause round-off
errors. Thus, in order to finish the calculation in a reasonable amount of computer
time, the time step should not be very small. But then the convergence of the Taylor
series becomes poorer. We realise that during a relatively long time step the acceler-
ation can change considerably from what it was at the beginning of the step, because
in reality all bodies move simultaneously. Some form of prediction of motions of
all bodies has to be introduced prior to taking the time step. The prediction can be
based on a low order Taylor series which does not require complicated calculations:

r1 = r + ṙ �t + 1

2
F �t2 + 1

6
F̂ �t3. (2.56)

We define F̂ as the backward difference

F̂ = F − F−1

�t−1
(2.57)

where �t−1 is the length of the preceding time step, and F−1 is the value of accel-
eration at the beginning of that step. In general, the computer algorithm becomes
faster when the derivatives (2.54) are constructed from the corresponding back-
ward differences. The values of F only need to be stored for the several previous
steps, and the derivatives of F are then calculated by simple operations from these
quantities. In particular, the prediction makes use of the values of the acceleration
at two successive points where the acceleration has to be calculated in any case,
and thus the prediction requires only modest extra calculation effort.

Other features which save computer time are the use of variable time step and
individual time step. At some points in the orbit a body may be advanced by
long time steps, at other more critical times a small step is necessary to preserve
accuracy. Every body has a different situation in this regard; therefore it is useful to
assign a different, individual, time step to each of them. The prediction of the orbits
of all bodies up to a common moment of time then becomes crucial. When the
acceleration and its derivatives change rapidly, it is necessary to go to a short time
step. Therefore one may calculate the length of the step by requiring that the ratio
of successive terms in the Taylor series is of the order of a small number η � 1.
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For example,

1
6 |Ḟ|�t3

1
2 |F|�t2

= η,

from which it follows that

�t = η
3|F|
|Ḟ| . (2.58)

Usually a somewhat more complicated rule for �t is used which takes account of
the higher derivatives of F but the general principle is the same. One may also set
other simple demands on �t based on practical experience with computations.

A special situation arises when two bodies come very close to each other. Then
a rule like Eq. (2.58) leads to such a small step that the computation may virtually
terminate before the two bodies pass each other. The source of the trouble is the
1/r3 factor in Eq. (2.7). Let us write this equation again just for two bodies, with
accelerations caused by other bodies lumped together as a perturbing acceleration
f :

r̈ = −µ
r
r3

+ f . (2.59)

Here µ = G(ma + mb); ma and mb are the masses of the two bodies. One attempts
to transform this to another form where there are no singular terms which approach
infinity when r → 0. This kind of transformation is called regularisation of the
equation of motion. The common first step is to introduce an auxiliary variable τ

by

dτ

dt
= 1

r
. (2.60)

If we represent differentiation relative to τ by primes Eq. (2.59) becomes

r ′′ = r ′

r
r ′ − µ

r
r

+ r2 f (2.61)

(Sundman 1912; Problem 2.10). This already helps somewhat since now the 1/r3

factor is replaced by 1/r . In order to get rid of the remaining 1/r we introduce two
auxiliary variables h and e:

h = 1

2

r ′2

r2
− µ

r
,

e = −r
r

− 1

µr2

[(
r × r ′)× r ′] . (2.62)
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It is then easy to see that Eq. (2.61) transforms to

r ′′ = 2hr − µe + r2 f . (2.63)

When f = 0, the quantities h and e are constants. We see this by evaluating

h′ = d

dτ

(
1

2

r ′2

r2
− µ

r

)
= −r ′r ′2

r3
+ r ′ · r ′′

r2
+ µ

r2
r ′,

where

r ′ · r ′′

r2
= r ′

r2
·
(

r ′

r
r ′ − µ

r
r

+ r2 f
)

= r ′r ′2

r3
− µ

r2
r ′ + r ′ · f .

Thus

h′ = r ′ · f . (2.64)

After some calculations we find also

e′ = − 1

µ

[
r ′ (r · f ) + f (r · r ′) − 2rh′] (2.65)

(Problem 2.11). Therefore a regularized equation of motion has been derived which
has no singular terms when r → 0 as long as f → 0. Quantities h and e arise again
in the next chapter where their physical significance is clarified (Eqs. (3.11) and
(3.13)).

The above regularisation scheme (Burdet 1967, Heggie 1973) is not the only
possibility. Even though the Burdet–Heggie regularisation is known to function
perfectly well in numerical solutions of the N -body problem (Saslaw et al. 1974,
Heggie 1975, Valtonen and Heggie 1979), actually another transformation called
the K-S regularisation is more widely used (Kustaanheimo 1964, Kustaanheimo
and Stiefel 1965). However, the important point to us is that there are methods to
handle close two-body encounters without slowing down the orbit calculation and
without loss of numerical accuracy.

How does one then measure the accuracy of the orbit calculation? One may
test the method with a problem where the analytic solution is known, such as
the two-body problem (Chapter 3, Problem 3.8). Alternatively, one may fol-
low the conservation of quantities which are known to be strictly constant in
the N -body problem, i.e. the centre of mass and momentum, the total energy
and angular momentum. Perhaps the most stringent test is based on the time-
reversability of the orbits. If at any point along the orbit the velocities of all bodies
are reversed, the bodies should retrace their trajectories exactly. Computational
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errors make this unlikely to happen in numerical orbit integration. The ability
to retrace the orbit backward is a very demanding test for the accuracy of the
method.

2.12 Dimensions and units of the three-body problem

In the general three-body problem, 21 independent variables are to be specified:
three position and three velocity components plus the mass value for each body.
The position and the motion of the centre of mass, as well as the total mass and
the linear scale (scale factor k above) of the system are not of much interest, so
that the number of ‘interesting’ variables is reduced to 13. The same can be said
about the spatial orientation of the system, described by two angles specifying the
direction of the total angular momentum. Therefore the number of dimensions of
the three-body problem is 11.

The magnitude of the total angular momentum L0 and the value of the total
energy E0 are important parameters. The combination

L2
0|E0|/G2m5

0 (2.66)

is a dimensionless quantity. Here m0 signifies the average mass of the three bodies,
to be defined more specifically in Chapter 7 (Eq. (7.28)). If this quantity is given
the value 6.25,

L0 ≡ Lmax = 2.5Gm2.5
0 /|E0|0.5. (2.67)

Lmax is an important standard of reference for the angular momenta of three-body
systems (Chapter 7).

The reason why the total mass M and the linear scale factor r are quantities of
little interest is that the three-body problem is scale free as mentioned above. If one
three-body problem with a given mass scale (total mass) M , distance scale r and
time scale t has been solved, then it is obvious (Eq. (2.7) and Section 2.10) that
this solution also applies to any other mass scale M and distance scale r . The time
scale t ∼ M−1/2r3/2 and the velocity scale v ∼ M1/2r1/2 transformations ensure
this. Therefore M and r are ‘uninteresting’ parameters.

In numerical orbit calculations it is usual to fix the system of units by putting the
gravitational constant G = 1. Writing this constant in the common astronomical
units of solar mass (M� = 1.99 × 1030 kg), parsec (1 pc = 3.086 × 1016 m) and
km/s, we get

G = 4.3 × 10−3 (km/s)2 pc/M�. (2.68)
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G = 1 ties the units such that corresponding to pc and km/s the mass unit is
1/(4.3 × 10−3 M�) = 233M�. Since

1 km/s ≈ 1 pc/Myr (2.69)

the corresponding unit of time is very nearly one megayear (1 Myr = 106 yr).
Obviously the calculation can be carried out in other units but this does not bring
a new dimension to the three-body problem. In practice, the time is frequently
given in the natural time unit of the three-body system which is the crossing time
Tcr = G M5/2/(2|E0|)3/2 (see Eq. (8.26) and the discussion there). This is roughly
the time that it takes a body to travel through the three-body system.

In principle, the three-body problem may be solved by going through the 11-
dimensional phase space with a fine tooth comb, and by calculating the orbital
evolution at each phase space point. Let us briefly consider how practical this
proposal is. Construct a grid in the phase space composed of 100 values in each
coordinate and calculate the orbits at each grid point. It is in total 10011 = 1022

orbits. If every orbit takes 1 second to calculate in a fast machine, the project would
last 1022 seconds, i.e. about 3 × 1014 yr. Even so, the solution would be rather rough
since a mesh of 100 grid points is far too coarse to cover the phase space adequately.
Therefore it is not possible to find a complete solution of the three-body problem by
‘brute force’, even if we have perfect integration methods and powerful computers
in use.

The alternative, an analytical solution for example in the form of a series has
been proposed and searched for. It has been estimated that 108 000 000 terms are
required in the Sundman series to represent a three-body solution with the accuracy
commonly used in the ephemeris calculations. The computer time requirement
would be impossible, and certainly the representation could not be said to be simple.
It is still possible that, in the future, computers that use mathematical manipulators
(e.g. Maple, Mathematica) may be used to identify important terms in long series
expansions.

In recent years it has become clear that solutions of the three-body problem can
be found and represented in simple form by using a combination of analytical and
computational methods. Analytical methods give the basic functional forms which
can be tested and improved by computer experiments. They also provide useful
physical insights into the problem. We will describe this avenue of research mainly
in Chapters 7 to 10. Before that, some computer experiments will be described
which are useful to develop the analytical theory.

2.13 Chaos in the three-body problem

A two-dimensional description of the state of the system is usually called a map.
In the three-body problem the free dimensions require reduction in order to make
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(–0.5, 0) (+0.5, 0)

(x,y)

Figure 2.2 In the Agekyan–Anosova map two bodies are placed on the horizontal
axis one unit apart. The third body is at (x, y), inside a ‘curved triangle’. The map
gives a unique description of the shape of the three-body configuration.

use of a map description. We may start by studying a planar problem where all
the position and velocity vectors lie in the plane defined by the three bodies. The
number of dimensions in the two-dimensional problem is 3 × 4 + 3 = 15, which
is reduced to 9 when we neglect the centre of mass (4 coordinates) and the two
scale-free parameters. There is now only one parameter related to orientation, the
rotation around the angular momentum vector. This leaves us with 8 ‘interesting’
dimensions. This can be further reduced by two if we limit ourselves to equal mass
systems.

In the Agekyan–Anosova map (Agekyan and Anosova 1967) the largest of the
three separations r12, r23, r31 is mapped on the horizontal axis and is assigned a
unit length. The two bodies have coordinates (−0.5, 0) and (+0.5, 0), respectively.
Then the spatial configuration (‘shape’) of the system is uniquely determined by
a point (x, y), x > 0, y > 0, representing the third body. This point lies inside a
‘curved triangle’ (Fig. 2.2). The Agekyan–Anosova (AA for short) map therefore
ignores the velocities of the bodies, but it may be used to describe the evolution
of the ‘shape’ of one or many such systems. By choosing the velocities to be zero
initially, the AA map gives a full description of the initial values of the three-body
systems under study.

The end result of an orbit calculation, no matter where the initial position lies
in the AA map, is the breakup of the system into two parts which escape from
each other hyperbolically, i.e. the largest separation becomes infinite when time
approaches infinity. In the end the system is always made up of a binary and an
escaping third body. The only exceptions are orbits where two bodies collide;
these are found in lines in the AA map and are of measure zero in the initial value
space. The same is true for triple collisions which take place at certain points of the
AA map (Tanikawa and Umehara 1998). Therefore the point (x, y) will always be
attracted to the (+0.5, 0) corner in the end. This point is referred to as an attractor
of the map. When the evolution of a typical point (x, y) is followed, it repeatedly
approaches the corner (+0.5, 0) and spends an extraordinary amount of time in that
neighbourhood, apparently for no reason, even before the final asymptotic plunge



2.13 Chaos in the three-body problem 41

towards the attractor. Therefore this point is called a strange attractor. The term
strange attractor was first introduced in connection with turbulent flows (Ruelle and
Takens 1971), but it is now commonly used to describe unpredictable behaviour in
deterministic systems.

Even though each point in the AA map gives rise to a unique orbit, the orbits in
the neighbourhood of any one point are generally quite different from the original
orbit, in an unpredictable way. This situation is described by the term chaos (Li and
Yorke 1975). Already in 1890 Poincaré recognised the phenomenon and conjectured
that three-body orbits are non-integrable. Indeed, the extreme sensitivity to initial
conditions raises the question of whether it is actually always possible to integrate
the correct orbit. In an effort to complete as many orbits as possible in the AA
map, using 16-digit accuracy, and by requiring that the time reversed orbit does
not deviate from the original (forward in time) orbit in relative amount by more
than 10−3, Anosova et al. found that 60% of the orbits are ‘predictable’ and 40%
‘unpredictable’, i.e. non-integrable to this accuracy (Anosova et al. 1994).

Notwithstanding this question of the absolute correctness of the integrated orbit,
we proceed to integrate orbits in all parts of the AA map using the best methods
currently available (Mikkola and Aarseth 1990, 1993, 1996, Lehto et al. 2000).
Figure 2.3 shows one of the properties of these orbits, the lifetime of the three-body
system. Lifetime is defined as the time interval from the beginning of the orbit
calculation up to the time of departure of the third body in its hyperbolic escape
orbit. In some parts of the AA map, the departure is immediate and the lifetime is
zero. These areas of the AA map represent only a few per cent of the total area of
the map. Because of symmetry with respect to time, these orbits are continuations
of hyperbolic approach orbits by the same third body. They are called flyby orbits.

Generally, the distribution of lifetime gives an impression of great randomness
but not of complete chaos. There are islands of stability where neighbouring orbits
have lifetimes similar to each other and which form some obvious structures. This
situation is usually referred to as weak chaos. When one takes a closer look at these
structures they show substructures which again break down to more substructures
with greater magnification. This is an example of fractal geometry which is en-
countered commonly in nature (Mandelbrot 1982). It is not really a surprise to find
fractal geometry in the AA map because strange attractors are usually associated
with fractals.

An important quantity which describes the properties of fractals is the fractal
dimension. If, for example, a set of points forms some structure in a two-dimensional
map (called imbedding space), and if the number of points inside a circle of radius
r is C(r ), then a relation C(r ) ∝ r tells us that the structure is in fact a line (i.e. one-
dimensional). Similarly, if our imbedding space is three-dimensional and C(r ) ∝ r2,
then the structure is two-dimensional. In general, write C(r ) ∝ r D, where now, by
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Figure 2.3 The lifetime of the triple system as a function of the initial position in
the AA map. Lifetimes are short in light areas of the map, long in the dark areas.

definition, the number D is the fractal dimension. For fractals, this number is
typically not a whole number. A good example is the Hénon map where points are
added to a two-dimensional map by a simple recursive formula. Its fractal dimension
is between one and two, indicating that the fractal structure is a little more than a
line, having a bit of the second dimension (Hénon 1976a, 1982).

For the general three-body problem, the fractal dimension has been found to be
a little above two, ≈ 2.1 (Heinämäki et al. 1998). This tells us that the fractal struc-
tures are a little more than two-dimensional, and that their embedding dimension is
three. In other words, there are only three major physical parameters in the problem,
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instead of 11. Two of these have been clearly identified in numerical experiments
and they are the energy E0 and the angular momentum L0 of the system (Valtonen
1974). For given values of the masses, the third obvious parameter is the binary
binding energy EB in configurations where a binary and a third body can be clearly
identified. This result is extremely significant for the development of the theory for
the three-body problem, to be examined in Chapter 7.

Another way to characterise a chaotic or weakly chaotic system is to calculate
its Lyapunov exponents. Suppose d(t) describes the separation of two orbits in the
AA map as a function of time t . Then for typical chaotic systems, the separation
increases exponentially from a small initial value:

d(t) ∝ eσ t , (2.70)

where σ is the Lyapunov exponent. If the time is measured in crossing times the
value of the Lyapunov exponent is typically σ � 1/2 (Ivanov and Chernin 1991,
Ivanov et al. 1995, Chernin and Valtonen 1998, Heinämäki et al. 1999). The inverse
of the Lyapunov exponent, σ−1, is frequently called the e-folding time.

We may also characterise the divergence of orbits in the AA map by looking at
the so called ‘phase drop’. It is a tight bundle of points in phase space, in this case
in the AA map. One follows the orbits initiated at each point inside the drop and
finds out where they go in the AA map at subsequent times. At later times a convex
contour is drawn which envelopes all the points and the relative area �� inside the
envelope is measured. As the orbits diverge, d(t) � exp(0.5t) (t in crossing times)
and the area �� � d(t)2. Defining the quantity

S = ln(��), (2.71)

it is obvious that S � t . The quantity S is called the Kolmogorov–Sinai entropy. In
the three-body systems it increases more or less like the time in units of the crossing
time (Heinämäki et al. 1999). The Kolmogorov–Sinai entropy measures the loss of
information about the initial conditions or the growth of disorder as time goes on,
and in this sense it corresponds to the entropy concept used in thermodynamics.
Here is a connection between thermodynamics and the three-body problem: a large
number of three-body systems behaves like a large number of molecules in a single
thermodynamic system. This analogy is helpful in describing the solutions of the
three-body problem.

2.14 Rotating coordinate system

Chapters 5 and 6 will be concerned with dynamics in a rotating coordinate system.
Then additional forces appear which are described below.
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O

r
êr

Figure 2.4 The unit vector êr points in the direction of the radius vector.

êr
ω

ω × êr

Figure 2.5 The vector ω points along the rotation axis of a rotating coordinate frame.

Let a particle of mass m be in a coordinate system which rotates with a constant
angular velocity ω with respect to the inertial coordinate system. The position
vector of the particle is r = r êr where êr is the unit vector in the direction of r
(Fig. 2.4). If d/dt is written for the derivatives in the inertial system and ∂/∂t for
the derivatives in the rotating system, then

dr
dt

= ∂r
∂t

+ r
dêr

dt
(2.72)

where ∂r/∂t = (dr/dt)êr . The rate of rotation of the unit vector êr equals the
magnitude of the angular speed. The direction of the change of êr is perpendicular
to both ω and êr (Fig. 2.5). Therefore

dêr

dt
= ω × êr (2.73)

and

dr
dt

= ∂r
∂t

+ ω × r . (2.74)

In terms of an operator we may write

d

dt
= ∂

∂t
+ ω × . (2.75)

The second derivative is obtained by applying the operator twice:

d2r
dt2

= ∂2r
∂t2

+ 2ω × ∂r
∂t

+ ω × (ω × r ). (2.76)

After moving the last two terms to the left hand side of the equation we see that in a
rotating coordinate system particles move as if they were subject to two additional
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forces: the Coriolis force

−2mω × ṙ (2.77)

and the centrifugal force

−mω × (ω × r ). (2.78)

These appear in addition to the md2r/dt2 force. A further force term appears if ω
is not constant.

Problems

Problem 2.1 A coordinate frame moving with the Earth is not quite inertial be-
cause of the rotation and orbital motion of the Earth around the Sun and the motion
of the Sun around the galactic centre. Find the accelerations due to these motions.

Problem 2.2 A star is at a distance z above the galactic plane, and its velocity is
v = 0. Due to the gravitational pull of the Milky Way it will begin to oscillate with
respect to the galactic plane. Find the period of oscillation.

Problem 2.3 Show that the potential of a homogeneous sphere equals that of a
point of the same mass. What happens inside a hollow spherical shell?

Problem 2.4 Replace the gravitational force by a general central force

f (r, θ, φ)êr .

This is directed along the line joining the two bodies but the magnitude varies in
an arbitrary way. What will happen to the trajectory of the centre of mass and the
angular momentum?

Problem 2.5 Derive the expressions (2.42) and (2.43) of the angular momentum.

Problem 2.6 Derive the expressions (2.46) and (2.47) of the total energy.

Problem 2.7 Show that the moment of inertia is given by expressions (2.49) and
(2.50).

Problem 2.8 Prove the Lagrange–Jacobi identity (2.51).

Problem 2.9 Assume that r1(t), r2(t) and r3(t) is a solution of a three-body
problem. Show that also k2r1(t), k2r2(t) and k2r3(t) is a solution of the same
problem, where k is a real number and the time t is scaled as k3.

Problem 2.10 Derive the equation (2.61).
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Problem 2.11 Prove the equation (2.65). Hint: make use of the derivations of
Eqs. (10.3) and (10.4).

Problem 2.12 If the gravitational constant G = 1, show that the unit of mass is
233M� if the unit of distance is one parsec and the unit of velocity is km/s. Show
also that the corresponding unit of time is close to one million years. Confirm that
the orbits can always be scaled so that the total energy E = −1 (if the energy is
negative) and the total mass is a constant, e.g. M = 3 units.



3

The two-body problem

In this chapter we study a system consisting of two bodies. It is the most complex
case that allows a complete analytical solution of the equations of motion. The
solution is derived in many elementary textbooks. The treatment here in Sections
3.1–3.12 follows Karttunen et al. (2003).

For definiteness, we assume that the bodies are the Sun and a planet. Equally well
they could be the components of a binary star or the Earth and an artificial satellite.

3.1 Equations of motion

Let the masses of the Sun and the planet be m1 and m2, respectively, and their
radius vectors in some inertial frame r1 and r2 (Fig. 3.1). Let r be the position of
the planet with respect to the Sun: r = r2 − r1. The length of the vector r is r . The
equations of motion of the Sun and the planet are then

r̈1 = G
m2r
r3

,

r̈2 = −G
m1r
r3

.
(3.1)

Since we are mainly interested in the relative motion of the planet with respect to
the Sun, we subtract the Sun’s equation from the planet’s equation of motion and get

r̈2 − r̈1 = −G
m1 + m2

r3
r .

Thus the equation for the relative motion is

r̈ = −µ
r
r3

, (3.2)

where

µ = G(m1 + m2). (3.3)

47
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r1

r2

r = r2 − r1

Figure 3.1 Radius vectors of the two-body problem.

If one of the masses is negligible (as in the case of an artificial satellite orbiting
the Earth), the frame is inertial. Otherwise the coordinate frame of relative motion
is accelerated. Even so the equation of motion (3.2) has the same form as in inertial
coordinates except that the mass of the central body is replaced by the total mass
of the system.

3.2 Centre of mass coordinate system

The position of the centre of mass, R, is obtained from

M R = m1r1 + m2r2, (3.4)

where M = m1 + m2. If the radius vectors of the bodies with respect to the centre
of mass are R1 and R2, we have

m1 R1 + m2 R2 = 0, (3.5)

whence

R2 = −m1

m2
R1. (3.6)

The relative position of the planet is

r = R2 − R1 = −m1

m2
R1 − R1 = −m1 + m2

m2
R1. (3.7)

We can now express the vectors R1 and R2 as functions of the relative radius
vector r :

R1 = − m2

m1 + m2
r ,

R2 = m1

m1 + m2
r .

(3.8)
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Figure 3.2 Vectors e and k.

We see that the positions with respect to the centre of mass and the relative
position differ only by a constant factor. Thus all these orbits are similar. Tak-
ing derivatives of Eq. (3.8) we see that the same proportions are valid also for
velocities.

3.3 Integrals of the equation of motion

For the complete solution of the two-body equation of motion we need 12 integra-
tion constants. Six of them describe the trajectory of the centre of mass. From the
remaining more interesting six constants three are needed for the angular momen-
tum and one for the energy in the barycentric frame. Since we prefer to use the
heliocentric frame, which is not inertial, we have to derive the six missing constants
carefully.

Instead of angular momentum, it is customary to use the angular momentum per
unit mass of the planet (in the rest of this chapter, this is called simply the ‘angular
momentum’):

k = r × ṙ . (3.9)

The time derivative of this is

k̇ = ṙ × ṙ + r × r̈ = −µ
r × r

r3
= 0. (3.10)

Thus k is a constant vector. By definition, it is always perpendicular to the radius
and velocity vectors. Thus the motion of the planet is always confined to the same
plane perpendicular to k and containing the Sun (Fig. 3.2).
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More integrals are found by taking the time derivative of the vector product
k × ṙ :

d

dt
(k × ṙ ) = k × r̈

= −(r × ṙ ) × µr
r3

= − µ

r3
((r · r )ṙ − (r · ṙ )r )

= −µ

(
ṙ
r

− ṙr
r2

)

= d

dt

(
−µr

r

)
,

whence

d

dt

(
k × ṙ + µr

r

)
= 0.

Integration over time gives

k × ṙ + µr/r = −µe, (3.11)

where e is a constant vector (cf. Eqs. (2.62) and (2.65)). The constant factor −µ is
needed to get a natural geometric interpretation for e, as will be seen later.

We have found two constant vectors, i.e. six constants. However, k and e are not
independent, as can be seen by evaluating the scalar product k · e:

k · e = − 1

µ

(
k · (k × ṙ ) + k · µr

r

)

= − 1

µ

(
(k × k) · ṙ + µ(k · r )

r

)

= − (k · r )

r
.

Since k is perpendicular to the orbital plane, we have k · r = 0, and thus

k · e = 0. (3.12)

This shows that the vector e is in the orbital plane, and gives only two independent
constants of integration.
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Yet another constant is found by taking the time derivative of the kinetic energy
per unit mass:

d

dt

(
1

2
v2

)
= d

dt

(
1

2
ṙ · ṙ

)
= ṙ · r̈ = −µṙ · r

r3
= −µṙ

r2

= d

dt

(µ

r

)
,

from which

d

dt

(
1

2
v2 − µ

r

)
= 0

or

1

2
v2 − µ

r
= h, (3.13)

where v is the velocity or the length of the vector ṙ . The constant h is called the
energy integral (cf. Eqs. (2.62) and (2.64)).

The energy integral can be expressed in terms of the previously found constants.
To show this, we write the definition of e as

µr/r + µe = ṙ × k

and take the scalar product of this equation with itself. Since ṙ and k are mutually
perpendicular, the length of ṙ × k is the product of the lengths of ṙ and k:

µ2
(

1 + 2
r · e

r
+ e2

)
= v2k2. (3.14)

The definition of the constant h gives

v2 = 2h + 2µ/r (3.15)

and r · e can be evaluated using the definition (3.11) of e:

r · e = − 1

µ

(
r · k × ṙ + µ

r · r
r

)
= − 1

µ
(k · ṙ × r + µr )

= k2

µ
− r.

(3.16)

Substituting the expressions (3.15) and (3.16) for v2 and r · e into (3.14) we get

µ2

(
1 + 2k2

µr
− 2 + e2

)
= 2hk2 + 2

µk2

r
,
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or

h = µ2

2k2
(e2 − 1). (3.17)

The constants we have found this far describe the orientation and shape of the
orbit, but they do not tell where the planet is at a given moment. For this purpose
we need one more integral. We use the energy integral

h = 1

2
|ṙ |2 − µ

r

to find the length of the velocity vector∣∣∣∣dr
dt

∣∣∣∣ = √2(h + µ/r ).

This is a separable differential equation, which can be integrated:∫ r

r0

|dr |√
2(h + µ/r )

=
∫ t

τ

dt = t − τ. (3.18)

The constant τ here is the moment of time when the position of the planet is r0.
Now we have the sixth integral that gives the zero point of time. If r0 is the position
of the planet at perihelion, τ gives the time of the perihelion passage, and it is then
called the perihelion time.

3.4 Equation of the orbit and Kepler’s first law

We have shown that the orbit lies in the plane perpendicular to k, but we still do
not know the detailed geometry of the orbit. The equation for the orbit is obtained
from the product r · e, evaluated before. According to the definition of the scalar
product we have

r · e = re cos φ, (3.19)

where φ is the angle between the vectors r and e. Combining this with (3.16) we
get

re cos φ = k2/µ − r

or

r = k2/µ

1 + e cos φ
. (3.20)

This is the equation of the orbit in polar coordinates. It gives the distance r of the
planet from the Sun as a function of the angle φ measured from the direction of
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a
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pericentreapocentre

Figure 3.3 Surface velocity is the area A swept by the radius vector per unit time.
In a two-body system the surface velocity is constant.

e. Equation (3.20) is the general equation of a conic section when r is measured
from a focus of the orbit. The eccentricity e of the orbit is the length of the vector
e, and the semi-latus rectum or parameter p = k2/µ. The angle φ is called the true
anomaly.

Kepler’s first law states that planets orbit the Sun along elliptic orbits, and the
Sun is in one of the two foci of the ellipse. We have now shown that this follows
from Newton’s laws, even in a more general form: the orbit can be any conic section,
an ellipse, parabola, or hyperbola.

3.5 Kepler’s second law

In polar coordinates (r, φ) the velocity vector of the planet can be expressed as

ṙ = ṙ êr + r φ̇êφ, (3.21)

where êr and êφ are unit vectors parallel with and perpendicular to the radius vector,
respectively. In polar coordinates the angular momentum k is

k = r êr × (ṙ êr + r φ̇êφ) = r2φ̇êz, (3.22)

where êz is a unit vector perpendicular to the orbital plane. This shows that the
length of k must be r2φ̇. But the area swept by the radius vector in time dt is

dA =
∫ r

0
r dr dφ = 1

2
r2 dφ,

and thus the surface velocity Ȧ (Fig. 3.3) is

Ȧ = 1

2
r2φ̇.
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Figure 3.4 The orbital elements of an elliptic orbit. Note that we have two planes
which intersect along the line of nodes. The normal of one of the planes is the
z axis while the second plane (the orbital plane of the planet) is inclined to it by
an angle ι.

Comparing this with the length of k we see that

Ȧ = 1

2
k = constant. (3.23)

Thus we have arrived at Kepler’s second law which says that the surface velocity
of the planet is constant.

Kepler’s second law holds even in a much more general case. Since r × r̈ vanishes
for all central forces (for which r̈ is parallel to r ), we can see from (3.10) that the
angular momentum remains constant, and the motion obeys the second law.

3.6 Orbital elements

The integration constants derived above fully determine the orbit. They are conve-
nient when studying the physics of the motion but they are not the best ones for
example for computing the position of the planet. The constants may be chosen in
many ways. For numerical calculations, the radius and velocity vectors at a given
instant of time are often the most useful quantities. In the following we will intro-
duce a third possibility, the conventional set of orbital elements, which describe the
geometry of the orbit (Fig. 3.4).

Let us adopt a fixed rectangular heliocentric frame, and make the xy plane
coincide with the orbital plane of the Earth, the ecliptic.

Since k is perpendicular to the orbital plane of the planet, the ratios of its com-
ponents fully determine the orientation of the orbital plane. The same information
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is contained in two angles. We choose one of these angles to be the angle between
k and the positive z axis and call it the inclination ι. (Inclination is often denoted
by i . Here, however, ι is preferred in order to avoid the awkward notation i̇ for the
time derivative.) The second one is the angle between the positive x axis and the
line of nodes. The line of nodes is defined as the intersection of the xy plane and
orbital plane. The nodes are the two points where the planet crosses the xy plane.
As a reference point we choose the node where the planet crosses the xy plane
from below, i.e. where the z coordinate becomes positive. This angle is called the
longitude of the ascending node �.

The vector e lies in the orbital plane of the planet. From the equation of the
conic section we see that the distance r attains its minimum when φ = 0, and
hence φ gives the angular distance from the perihelion. Thus the vector e points
to the direction of the perihelion. The direction of e may also be determined by
specifying the angle between the perihelion and some fixed direction. If the latter
angle is measured from the ascending node, it is called the argument of perihelion
ω.

Another frequently used quantity is the longitude of perihelion � , defined as

� = � + ω. (3.24)

This is measured partly along the ecliptic, partly along the orbital plane. If the
inclination is zero, the direction of the ascending node becomes indeterminate, but
the longitude of the perihelion remains a well defined quantity.

The length of the vector e is simply the eccentricity of the orbit.
The equation of a conic section is

r = p

1 + e cos φ
, (3.25)

where the semi-latus rectum or parameter p of elliptic and hyperbolic orbits can
be expressed in terms of the semi-major axis a and eccentricity e:

p = a|1 − e2|. (3.26)

We saw previously that p = k2/µ, and thus the semi-major axis is

a = k2

µ|1 − e2| . (3.27)

This gives the angular momentum as a function of the orbital elements:

k =
√

aµ|1 − e2|. (3.28)
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An important relation between the size of the orbit and the energy integral h is
obtained by expressing k in terms of h according to (3.17):

k2 = µ2(e2 − 1)/2h. (3.29)

Substitution into (3.27) gives

a = µ(e2 − 1)

2h|1 − e2| (3.30)

or

a =
{

−µ/2h if 0 ≤ e < 1 (ellipse)

µ/2h if e > 1 (hyperbola).
(3.31)

Because a must be positive, we see immediately that h is negative for elliptic orbits
and positive for hyperbolic orbits. A parabolic orbit is a limiting case between these,
its energy integral being zero.

The five elements �, ω, ι, a and e determine the position, size and shape of the
orbit. Again, it remains to fix the position of the planet. For this purpose we can
use the previously defined time of perihelion τ .

In the Jacobi representation of the three-body problem, the system is divided
into a binary orbit and a third-body orbit around the centre of mass of the binary.
These are instantaneous or osculating two-body orbits; even though both the inner
and the outer orbits are described by six orbital elements, these elements do not
remain fixed during the evolution of the system. However, it is useful to specify
the current state of the system using the osculating orbital elements which would
remain constant in purely two-body situations.

Because of the scale-free property of the three-body orbit solutions, one may
always choose the semi-major axis of the inner binary as the distance unit. Similarly,
the binary mass m1 + m2 or, alternatively, µ may be put equal to unity. Also, one
may choose the orbital plane of the binary as the plane of reference; then the two
angles describing the orientation of this plane, � and ι for the inner binary are not
needed. Then we are left with only three orbital elements for the inner binary, as
well as the mass ratio m1/m2 of the binary components, as the free parameters of
the problem. The outer orbit requires the full complement of six orbital elements
plus the third-body mass. Thus the number of free parameters is 11 as it should be
in the three-body problem (Section 2.12). Figure 3.5 illustrates the two two-body
orbits in their osculating planes A and B.
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A

B

ι
Ω
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ω
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Q

Figure 3.5 The osculating orbital planes A and B for inner and outer binary orbits,
respectively, in the Jacobi representation of the three-body problem. The binary
has components of masses m1 and m2, and the third-body mass m3. The two planes
are inclined by angle ι and the line of nodes is at the angle � with respect to a
fixed direction in plane A. The pericentre of the outer orbit is at the angle ω with
respect to the line of nodes. The pericentre distance of the outer orbit is Q. The
pericentre distance of the outer orbit is usually normalised to the semi-major axis
of the inner binary.

3.7 Orbital velocity

Assume first that the orbit is an ellipse. From the expressions of the energy integral

h = 1

2
v2 − µ

r
,

h = − µ

2a
,

we get

− µ

2a
= 1

2
v2 − µ

r
,

from which we can solve the velocity

v =
√

µ

(
2

r
− 1

a

)
. (3.32)
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For a hyperbolic orbit h = µ/2a, and thus

v =
√

µ

(
2

r
+ 1

a

)
. (3.33)

When the distance r approaches infinity, v → √
µ/a, which gives

a = µ

v2
, (3.34)

a relation which will be used frequently.

3.8 True and eccentric anomalies

We now know that the planet is in perihelion at time τ . Next we will study how to
use the orbital elements to find the position of the planet for an arbitrary instant of
time.

The equation of an ellipse can be written as

r = a(1 − e2)

1 + e cos φ
, (3.35)

where φ is the true anomaly of the planet. The problem is to find φ as a function of
time.

We begin this by defining an auxiliary quantity, the eccentric anomaly E , as
the angle ∠QC P ′ of Fig. 3.6. We then derive transformation equations between φ

and E . From Fig. 3.6 we get the following equations for various distances:

|C Q| = |C F | + |F Q|,
|C F | = ae,

|C Q| = a cos E,

|F Q| = r cos φ.

From these we obtain the length of F Q in two different ways:

|F Q| = r cos φ = a cos E − ae

or

a(1 − e2)

1 + e cos φ
cos φ = a cos E − ae.
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Figure 3.6 Definitions of the true anomaly φ and eccentric anomaly E . Point P ′
lies on a circle centered on C while P is the corresponding point on an ellipse
which is obtained from the circle by contraction in the vertical direction by a factor
b/a.

From this we can solve for either cos φ or cos E :

cos φ = cos E − e

1 − e cos E
,

cos E = cos φ + e

1 + e cos φ
.

To get an unambiguous relation between φ and E we also need expressions for
sin φ and sin E . These are obtained by expressing |Q P| in two different ways:

|Q P| = b

a
|Q P ′| = b

a
(a sin E)

= a
√

1 − e2 sin E = r sin φ = a(1 − e2)

1 + e cos φ
sin φ.

This gives

sin E =
√

1 − e2
sin φ

1 + e cos φ
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and using the previous expression of cos φ in terms of E :

sin φ =
√

1 − e2
sin E

1 − e cos E
.

Thus we have the following equations for the angles E and φ:

sin φ =
√

1 − e2
sin E

1 − e cos E
,

cos φ = cos E − e

1 − e cos E
,

(3.36)

sin E =
√

1 − e2
sin φ

1 + e cos φ
,

cos E = cos φ + e

1 + e cos φ
.

(3.37)

3.9 Mean anomaly and Kepler’s equation

We continue by defining yet another anomaly. The mean anomaly M is defined
as the angle between the perihelion and the radius vector assuming that the planet
moves at a constant angular velocity:

M = 2π
t − τ

P
= n(t − τ ). (3.38)

Here P is the orbital period of the planet and n = 2π/P is called the mean motion,
i.e. the mean angular velocity. According to Kepler’s second law the surface velocity
is constant. Thus the area of the shaded region in Fig. 3.7 is

A = πab
t − τ

P
. (3.39)

But this area is also

A = b

a
(area of F P ′ X )

= b

a
(area of the sector C P ′ X − area of the triangle C P ′F)

= b

a

(
1

2
a(aE) − 1

2
(ae)(a sin E)

)

= 1

2

b

a
(a2 E − a2e sin E)

= 1

2
ab(E − e sin E).

(3.40)
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Figure 3.7 To derive Kepler’s equation the shaded area is expressed in terms of
the mean and eccentric anomalies.

The two expressions (3.39) and (3.40) of the area give the equation

A = 1

2
ab(E − e sin E) = πab

t − τ

P
= 1

2
abn(t − τ )

= 1

2
abM,

or

E − e sin E = M. (3.41)

This is called Kepler’s equation. It gives the connection between the eccen-
tric anomaly and the mean anomaly which increases at a constant rate with
time.

3.10 Solution of Kepler’s equation

The mean anomaly is easily obtained since it is directly proportional to time. The
eccentric anomaly must be solved from the transcendental Kepler equation. Because
of the nature of the equation there is no finite expression giving the position as a
function of time. The solution must either be found numerically or be evaluated
from a series expansion. Next we give a simple method for solving the equation by
iteration. Series expansions will be studied later in Section 3.15.
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Unless the eccentricity is very high the eccentric anomaly is not very different
from the mean anomaly. Therefore, we write it as

E = M + x,

where x is a small correction. Substituting this into Kepler’s equation we get

M + x − e sin(M + x) = M,

or

x = e sin(M + x). (3.42)

We now apply the addition formula of the sines and replace sin x and cos x by the
first terms of their Taylor expansions (sin x ≈ x , cos x ≈ 1):

x = e(cos M sin x + sin M cos x)

≈ ex cos M + e sin M.

From this we can solve the first approximation for x :

x (1) = e sin M

1 − e cos M
.

We substitute this in (3.42), and solve for an improved approximation for x :

x (2) = e sin
(
M + x (1)

)
.

We continue this iteration until the consecutive values of x do not change more
than the required accuracy. The whole algorithm can be summarized as follows:

x (1) = e sin M

1 − e cos M
,

x (2) = e sin
(
M + x (1)

)
,

x (3) = e sin
(
M + x (2)

)
,

...

x (n) = e sin
(
M + x (n−1)

)
.

(3.43)

The iteration can be terminated when
∣∣x (n) − x (n−1)

∣∣ < ε, where ε is the accuracy
needed. It is absolutely necessary to express the angles in radians, otherwise the
result is nonsense. For small eccentricities this method converges very rapidly, and
the values do not change noticeably after a couple of iterations.

Example 3.1 The mean motion of asteroid (1221) Amor is n = 0.371◦/d and
eccentricity e = 0.4346. Find its mean, eccentric and true anomalies 300 days after
the perihelion passage.
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The orbital period is

P = 360◦

0.371◦/d
= 970.35 d,

and thus the mean anomaly is

M = 360◦ 300

970.35
= 111.30◦ = 1.9426 rad.

Next we solve the eccentric anomaly from Kepler’s equation. Since the eccentricity
is relatively large, the convergence is not very rapid:

x (1) = e sin M

1 − e cos M
= 0.3497,

x (2) = e sin
(
M + x (1)

) = 0.3263,

x (3) = e sin
(
M + x (2)

) = 0.3329,

...

x (7) = e sin
(
M + x (6)

) = 0.3315.

After this the values do not change, and thus the solution is

E = M + x (6) = 2.2740 rad = 130.29◦.

To find the true anomaly we evaluate

sin φ =
√

1 − e2
sin E

1 − e cos E
= 0.5362,

cos φ = cos E − e

1 − e cos E
= −0.8441,

which give

φ = 2.5756 rad = 147.57◦.

Note that due to the large eccentricity of its orbit the asteroid has moved over a
much greater angle than the direction given by the mean anomaly.

3.11 Kepler’s third law

The last problem is to find the mean anomaly, which requires that we know the
orbital period P . The surface velocity law can be expressed in the form

dA = 1

2
k dt.
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We integrate this over one orbital period:∫
orbital ellipse

dA = 1

2
k
∫ P

0
dt.

Here the left hand side is the area of the ellipse, which in terms of the orbital
elements is πa2

√
1 − e2. Thus we get

πa2
√

1 − e2 = 1

2
k P.

Substituting the expression (3.28) for k we get

P = 2π√
µ

a3/2. (3.44)

This is the exact form of Kepler’s third law. Note that it depends also on the mass
of the planet. In the case of the planets of the solar system this effect is rather small,
and thus it remained unnoticed by Kepler.

From the third law we get an expression for the mean motion:

n = 2π

P
= √

µa−3/2. (3.45)

3.12 Position and speed as functions of eccentric anomaly

We set up a rectangular ξη coordinate frame in the orbital plane of the planet in such
a way that the origin is in the Sun and the ξ axis points to the perihelion (Fig. 3.8).
The unit vectors parallel to the coordinate axes are denoted by êξ and êη. The radius
vector of the planet is then

r = a(cos E − e)êξ + b sin E êη. (3.46)

The time derivative of this gives the velocity

ṙ = −aĖ sin E êξ + bĖ cos E êη. (3.47)

To find the time derivative of E we take Kepler’s equation in the form

E − e sin E = √
µa−3/2(t − τ )

and differentiate with respect to time:

Ė(1 − e cos E) = √
µa−3/2.

This gives

Ė =
√

µa−3/2

1 − e cos E
. (3.48)
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Figure 3.8 The position of the planet in terms of the eccentric anomaly E is
r = a(cos E − e)êξ + b sin E êη.

Using the expressions (3.46) and (3.47) we obtain the lengths of the radius and
velocity vectors:

r2 = r · r = a2(cos E − e)2 + b2 sin2 E

= a2(cos2 E − 2e cos E + e2 + (1 − e2) sin2 E)

= a2(1 − 2e cos E + e2 cos2 E)

= a2(1 − e cos E)2,

from which

r = a(1 − e cos E). (3.49)

The speed is calculated in a similar manner:

v2 = ṙ · ṙ = a2 Ė2(sin2 E + (1 − e2) cos2 E)

= a2µa−3(1 − e2 cos2 E)

(1 − e cos E)2

= µ

a

1 + e cos E

1 − e cos E
,
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ψ
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θ
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ae
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Figure 3.9 A planet (or a comet) approaches the Sun at F from a large distance.
The impact distance is b, i.e. the distance by which the planet would miss the Sun
at its initial (nearly) straight line orbit. This straight line makes an angle ψ with
the major axis (vertical line). The semi-latus rectum p is also marked, as well as
the scattering angle θ .

whence

v =
√

µ

a

1 + e cos E

1 − e cos E
. (3.50)

3.13 Hyperbolic orbit

Figure 3.9 illustrates a hyperbolic orbit about the focal point F . The equation of
the orbit is (Eq. (3.25))

r = p

1 + e cos φ
. (3.51)

If we put r = ∞, it follows that 1 + e cos φ = 0 and the asymptotic true anomaly
φ = π − ψ , cos φ = − cos ψ , and

ψ = ± arccos

(
1

e

)
. (3.52)

Therefore the incoming and outgoing directions are at the angle ψ relative to the
major axis.

Without the orbital curvature the orbit would pass the focus at the minimum
distance of

ae sin ψ = a
√

e2 − 1 = b. (3.53)

This is called the impact parameter of the orbit. We easily see that

b2 = ap (3.54)
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F

dθ

θ

θ
b
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Figure 3.10 A particle approaches a body at F initially along a horizontal path
which is subsequently scattered by an angle θ . Orbits whose impact distances lie
within the ring of width db are scattered into the solid angle between θ and θ + dθ .

where (Eq. (3.26))

p = a(e2 − 1) (3.55)

is the semi-latus rectum of the orbit, also called the parameter. Because of the
curvature, the incoming and outgoing asymptotic directions differ by an angle

θ = π − 2ψ (3.56)

which is called the scattering angle. Since

sin
θ

2
= sin

(π

2
− ψ

)
= cos ψ = 1

e
,

it follows that

b2 = a2(e2 − 1) = a2 cot2
θ

2
. (3.57)

Consider a steady uniform stream of particles approaching the body at point F .
What is the probability that a particle is scattered to the solid angle d� between θ

and θ + dθ? In order that particles scatter into this interval, their impact parameters
must lie within a corresponding interval b, b + db (see Fig. 3.10). To find out how
many particles scatter into this solid angle we define the cross-section σ (θ ) d� for
scattering to the solid angle

d� = 2π sin θ dθ

as the area of the ‘impact ring’ 2πb db:

σ (θ)2π sin θ dθ = −2π b db. (3.58)

The minus sign tells us that increasing b results in smaller θ .
From Eq. (3.57) we get

2πb db = 2πa2 cot
θ

2
d

(
cot

θ

2

)
= −2π

a2

4

sin θ dθ

sin4(θ/2)
.
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θ
b

db

u
ms

Figure 3.11 Calculating dynamical friction. Small bodies of mass ms stream past
a heavy body of mass ma with speed u. In unit time the heavy body is influenced
by all the bodies in the volume 2πb db u which are in the impact distance range
[b, b + db]. The number of such bodies is 2πb db un, if n is the number density
in the stream.

Therefore

σ (θ ) = a2

4

1

sin4(θ/2)
. (3.59)

This is called the Rutherford differential cross-section since it was originally derived
by Rutherford in connection with scattering of alpha particles by atomic nuclei.

3.14 Dynamical friction

Consider a heavy body moving through a field of light bodies. There is a succession
of hyperbolic two-body encounters the net effect of which is to slow down the
motion of the heavy body. This slowing down may be described as dynamical
friction. In the following we show how dynamical friction is calculated using a
succession of hyperbolic two-body encounters (Chandrasekhar 1942, Binney and
Tremaine 1987). Let a light body of mass ms approach a heavy body of mass
ma with the relative speed u at infinity and with impact parameter b. According
to Eq. (3.34) the semi-major axis of the orbit is a = G(ma + ms)/u2. After the
scattering by angle θ there is a change in the velocity of the mass ma , in the
direction parallel to the line of approach, by

�V|| = ms

ms + ma
u(1 − cos θ ) (3.60)

(see Fig. 3.11). In unit time, the heavy body samples a volume of length u and
surface area 2πb db. If n is the number density of light bodies, the heavy body
meets

2πbun db = σ (θ )2πun sin θ dθ (3.61)
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light bodies in the impact distance range b, b + db. Therefore the total change in
the speed of the heavy body parallel to its motion through the field of light bodies
per time interval �t is:

�V||
�t

= 2π
ms

ms + ma
u2n

a2

4

∫ π

θmin

(1 − cos θ )
1

sin4(θ/2)
sin θ dθ.

The integral is equal to∫ π

θmin

8 cot

(
θ

2

)
d

(
θ

2

)
=
∣∣∣∣
π

θmin

8 ln

(
sin

θ

2

)

= −8 ln

(
1√

1 + cot2(θmin/2)

)
.

The minimum deflection angle θmin is connected to the maximum impact distance
bmax:

b2
max = a2 cot2

(
θmin

2

)
. (3.62)

The quantity bmax describes the extent of the medium of light bodies (at the density
n), and it is usually possible to give a good estimate for it. Therefore the integral
becomes

−8 ln

⎛
⎜⎜⎜⎜⎝

1√
1 + b2

maxu4

[G(ma + ms)]2

⎞
⎟⎟⎟⎟⎠ = 4 ln

(
1 + b2

maxu4

[G(ma + ms)]2

)

and

−du

dt
= �V||

�t
= 2π

G2ms(ma + ms)

u2
n ln

(
1 + b2

maxu4

[G(ma + ms)]2

)
.

The changes of velocity �V⊥ perpendicular to the flow cancel out since passages
from the opposite sides of the heavy body give contributions of opposite signs. Then
the velocity change is purely parallel to the motion and may be written in vector
form

du
dt

= −4πG2msman ln � · u
u3

(3.63)

where

� = bmaxu2

Gma
(3.64)
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if ms is negligible in comparison with ma . Since generally �2 � 1 we have re-
placed ln(1 + �2) by 2 ln �. Equation (3.63) is the basic equation for dynamical
friction.

3.15 Series expansions

Since planetary orbits are nearly circular, we can approximate their orbits as circles
modified with small corrections. We now study briefly how some quantities related
to elliptic orbits can be expressed as series expansions. The derivations given here
follow Kovalevsky (1967), which gives more such expansions.

Because the eccentricities are usually small, it is practical to express these quan-
tities as power series of the eccentricity. The calculations are not usually very
involved mathematically but may be somewhat laborious. Computer programs for
symbolic manipulation can be very useful in this work.

3.15.1 Series expansion of the eccentric anomaly

When computing the position in the orbit we have to solve the transcendental
equation M = E − e sin E . If the eccentricity is small, the difference E − M =
e sin E will also be small. We will now derive a series expansion for this difference
in terms of the mean anomaly.

We begin by developing e sin E as a Fourier series with respect to M . The
constant term of the series is

a0 = 1

2π

∫ 2π

0
e sin E dM, (3.65)

where dM is obtained by differentiating Kepler’s equation:

dM = (1 − e cos E) dE . (3.66)

We take the eccentric anomaly as the new integration variable. This will not change
the integration limits. Thus the constant term is

a0 = 1

2π

∫ 2π

0
e sin E(1 − e cos E) dE

= 1

2π

∫ 2π

0
e sin E dE − 1

2π

∫ 2π

0
e2 sin E cos E dE = 0.

(3.67)

This shows that over a long period of time the mean and eccentric anomalies are
the same on average, as they should be according to their definitions.
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Coefficients of the cosine terms are

ak = 1

π

∫ 2π

0
e sin E cos k M dM

= 1

π

∫ π

−π

e sin E cos k M dM

= 0,

(3.68)

since the integrand is an odd function. Thus the only remaining terms are the sine
terms

bk = 1

π

∫ 2π

0
e sin E sin k M dM. (3.69)

This can be integrated by parts. In the formula∫
u dv = uv −

∫
v du

we set

u = e sin E,

dv = sin k M dM,

which gives

du = e cos E dE,

v = −1

k
cos k M = −1

k
cos k(E − e sin E).

The expression of the coefficient bk is then

bk = − 1

πk

∣∣∣∣
2π

0

(e sin E cos k(E − e sin E))

+ 1

πk

∫ 2π

0
cos k(E − e sin E)e cos E dE .

The substitution term is obviously zero, and to the integrand we can apply the
formula

cos x cos y = 1

2
(cos(x + y) + cos(x − y)),
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to get

bk = e

2πk

∫ 2π

0
cos[(k + 1)E − ke sin E] dE

+ e

2πk

∫ 2π

0
cos[(k − 1)E − ke sin E] dE

= e

k
(Jk+1(ke) + Jk−1(ke)),

(3.70)

where Jk(x) is the Bessel function

Jk(x) = 1

2π

∫ 2π

0
cos(kt − x sin t) dt. (3.71)

Using the property of the Bessel functions

Jk(x) = x

2k
[Jk−1(x) + Jk+1(x)] (3.72)

we have

bk = 2

k
Jk(ke). (3.73)

Thus the eccentric anomaly is

E = M +
∞∑

k=1

2Jk(ke)

k
sin k M. (3.74)

The Bessel functions can be evaluated from the following series expansions (see
e.g. Arfken 1970):

J0(x) =1 −
( x

2

)2
+ 1

4

( x

2

)4
− · · · + (−1)n

(n!)2

( x

2

)2n
+ · · · ,

Jk(x) =
( x

2

)k 1

k!

[
1 − 1

k + 1

( x

2

)2
+ · · · +

(−1)n

n!(k + 1)(k + 2) · · · (k + n)

( x

2

)2n
+ · · ·

]
.

(3.75)

We see that xk is the lowest power of x contained in Jk(x). If we want to include
terms up to the kth power of the eccentricity, it suffices to evaluate the coefficients
b1, . . . , bk .
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The first few Bessel functions are

J0(x) = 1 − x2

4
+ x4

64
+ O(x6),

J1(x) = x

2
− x3

16
+ O(x5),

J2(x) = x2

8
− x4

96
+ O(x6),

J3(x) = x3

48
+ O(x5),

J4(x) = x4

384
+ O(x6),

J5(x) = O(x5).

(3.76)

Using these we get the following coefficients for the Fourier series of E − M

b1 = 2J1(e) = e − e3

8
+ O(e5),

b2 = 2J2(2e)

2
= e2

2
+ e4

6
+ O(e6),

b3 = 2J3(3e)

3
= 3e3

8
+ O(e5),

b4 = 2J4(4e)

4
= e4

3
+ O(e6),

b5 = 2J5(5e)

5
= O(e5).

(3.77)

Neglecting terms higher than e3 we have the approximation

E = M +
(

e − e3

8

)
sin M + e2

2
sin 2M + 3e3

8
sin 3M

= M + e sin M + e2

2
sin 2M + e3

8
(− sin M + 3 sin 3M).

(3.78)

Note that the coefficients of this Fourier series are only approximate. Actually the
coefficients are infinite power series. If greater accuracy is needed, we have to use
more Fourier terms and also evaluate the coefficients by including higher powers
of the eccentricity.

3.15.2 Series of sin nE and cos nE

Next, we will derive an auxiliary result needed for other expansions. We consider
first the Fourier series of cos nE in terms of M .
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The constant term is

a0 = 1

2π

∫ 2π

0
cos nE dM = 1

2π

∫ 2π

0
cos nE(1 − e cos E) dE . (3.79)

When n > 1, this integral vanishes. When n = 1, the term e cos2 E will give a
non-zero result. Thus the constant term is

a0 = −e

2
δn1. (3.80)

The coefficients of the sine terms are

bk = 1

π

∫ 2π

0
cos nE sin k M dM. (3.81)

The integrand is odd as a product of odd and even functions. Hence all the coeffi-
cients bk are zero.

The coefficients of the cosine terms are

ak = 1

π

∫ 2π

0
cos nE cos k M dM

= 1

kπ

∫ 2π

0
cos nE

d sin k M

dM
dM

= 1

kπ

∣∣∣∣
2π

0

cos nE sin k M − 1

kπ

∫ 2π

0
sin k M

d cos nE

dM
dM

= n

kπ

∫ 2π

0
sin nE sin k(E − e sin E) dE

= n

2kπ

∫ 2π

0
cos((k − n)E − ke sin E) dE

− n

2kπ

∫ 2π

0
cos((k + n)E − ke sin E) dE

= n

k
[Jk−n(ke) − Jk+n(ke)] .

(3.82)

Thus we have the following expansion for cos nE

cos nE = −e

2
δn1 +

∞∑
k=1

n

k
[Jk−n(ke) − Jk+n(ke)] cos k M. (3.83)



3.15 Series expansions 75

In the same manner we find

sin nE =
∞∑

k=1

n

k
[Jk−n(ke) + Jk+n(ke)] sin k M. (3.84)

After some work we get the following approximate expressions by neglecting
all terms proportional to the fourth and higher powers of the eccentricity:

cos E = −e

2
+
(

1 − 3e2

8

)
cos M +

(
e

2
− e3

2

)
cos 2M

+ 3e2

8
cos 3M + e3

3
cos 4M,

cos 2E =
(

−e + e3

12

)
cos M + (1 − e2) cos 2M

+
(

e − 9e3

8

)
cos 3M + e2 cos 4M + 25e3

24
cos 5M,

sin E =
(

1 − e2

8

)
sin M +

(
e

2
− e3

8

)
sin 2M

+ 3e2

8
sin 3M + e3

3
sin 4M,

sin 2E =
(

−e + e3

6

)
sin M + (1 − e2) sin 2M

+
(

e − 9e3

8

)
sin 3M + e2 sin 4M + 25e3

24
sin 5M.

(3.85)

3.15.3 Distance as a function of time

Next we find a series for the length r of the radius vector as a function of the mean
anomaly (and hence time). We know that

r = a(1 − e cos E). (3.86)

We can use here the previously found series for cos E :

r

a
= 1 − e cos E

= 1 + e2

2
−

∞∑
k=1

e

k
(Jk−1(ke) − Jk+1(ke)) cos k M

= 1 + e2

2
−

∞∑
k=1

2e

k2

dJk(ke)

de
cos k M.

(3.87)
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Keeping only the terms up to e3 we get

r

a
= 1 + e2

2
+
(

−e + 3e3

8

)
cos M − e2

2
cos 2M − 3e3

8
cos 3M. (3.88)

The inverse value of the distance is also easily obtained:

a

r
= 1

1 − e cos E
= 1

dM/dE
= dE

dM

= 1 +
∞∑

k=1

2Jk(ke) cos k M.

(3.89)

The beginning of this series is

a

r
= 1 +

(
e − e3

8

)
cos M + e2 cos 2M + 9e3

8
cos 3M. (3.90)

Using these results we can evaluate all powers of r . Since (r/a)n =
(1 − e cos E)n , we get first an expression containing powers of cos E up to
cosn E . These can be reduced to expressions containing only cosines of E and
its multiples. Finally, these can be expressed as series of M . For example

( r

a

)2
= (1 − e cos E)2 = 1 − 2e cos E + e2 cos2 E

= 1 − 2e cos E + e2

2
(1 + cos 2E).

(3.91)

Substituting the series of cos E and cos 2E we get

( r

a

)2
= 1 + 3e2

2
+
(

−2e − 5e3

4

)
cos M

− e2

2
cos 2M − e3

4
cos 3M.

(3.92)

3.15.4 Legendre polynomials

Legendre polynomials will be needed in later chapters. We will introduce them
here, although they are not directly related to the two-body case. See e.g. Arfken
(1970) for a thorough treatment of these polynomials and related functions.

Consider the situation of Fig. 3.12. The potential at P due to the mass at Q is
proportional to 1/|r − r ′|. We want to express this in terms of the lengths r and r ′
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r

r'
Q

P

ψ

Figure 3.12 The potential at P due to the mass at Q can be expressed as a power
series of t = r ′/r .

and the angle ψ between the vectors r and r ′. From the cosine formula we get

1

|r − r ′| = (r2 + r ′2 − 2rr ′ cos ψ)−1/2

= 1

r

(
1 +

(
r ′

r

)2

− 2
r ′

r
cos ψ

)−1/2

.

(3.93)

For brevity, we denote t = r ′/r and x = cos ψ . The expression can now be devel-
oped as a power series in t :

1

|r − r ′| = 1

r
(1 + t2 − 2t x)−1/2 = 1

r

∞∑
n=0

tn Pn(x). (3.94)

The coefficients Pn(x) appearing here are functions of x , and they constitute a set of
special functions we will need. Their expressions can be found from the binomial
expansion

1

|r − r ′| = 1

r

∞∑
n=0

(2n)!

22n(n!)2
(2t x − t2)n

= 1

r

∞∑
n=0

n∑
k=0

(−1)k(2n)!

22nn!k!(n − k)!
(2x)n−ktn+k,

= 1

r

∞∑
n=0

�n/2�∑
k=0

(−1)k(2n − 2k)!

22n−2kk!(n − k)!(n − 2k)!
(2x)n−2ktn.

(3.95)

Comparing this with (3.94) we can pick up the expressions of the functions Pn:

Pn(x) =
�n/2�∑
k=0

(−1)k(2n − 2k)!

22nk!(n − k)!(n − 2k)!
xn−2k . (3.96)
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These functions are called the Legendre polynomials, the first ones being

P0(x) = 1,

P1(x) = x,

P2(x) = 1

2
(3x2 − 1),

P3(x) = 1

2
(5x2 − 3x),

P4(x) = 1

8
(35x4 − 30x2 + 3).

(3.97)

Problems

Problem 3.1 Show that the true and eccentric anomalies are related by

tan
φ

2
=
√

1 + e

1 − e
tan

E

2
.

Hint: show first that

tan2 x

2
= 1 − cos x

1 + cos x
.

Problem 3.2 At the perihelion the distance of a comet from the Sun is 0.5 AU and
its velocity is 58 km/s. What is the type of the orbit: ellipse, parabola or hyperbola?
Find the semi-major axis, parameter and eccentricity of the orbit.

Problem 3.3 The Earth was at perihelion in 4 January 1995 at 11 UTC. Find the
mean, eccentric and true anomalies of the Earth on 12 February 1995 at 12 UTC.
Orbital elements of the Earth are a = 1.000 AU, e = 0.0167.

Problem 3.4 A comet moves in an elliptic orbit with a = 5.0 AU and e = 0.8.
Find the true anomaly of the comet and distance from the Sun, when the time
elapsed since the perihelion passage is P/4, where P is the period of the comet.

Problem 3.5 An object moves in an elliptic orbit. What is the maximum value of
its radial velocity and when is this velocity attained? Apply the results to the Earth.

Problem 3.6 (a) Find the time average of the distance for a body moving in an
elliptic orbit:

〈r〉 = 1

P

∫ P

0
r dt.
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Hint: use the eccentric anomaly. Why is this different from a?
(b) Find the mean distance averaged with respect to the true anomaly:

r̄ = 1

2π

∫ 2π

0
r dφ.

(c) The semi-major axis is sometimes called the mean distance. What kind of a
‘mean’ distance could it mean? (This leads to an integral that is somewhat harder
to evaluate than the two previous ones.)

Problem 3.7 Show that the solution of a two-body problem can be written in the
form

r (τ ) = r0 f (τ, r0, r ′
0) + r ′

0g(τ, r0, r ′
0),

where

τ = √
µ(t − t0).

The prime (′) means a derivative with respect to τ , and subscript zero refers to the
value at t = t0. Here f and g are power series in τ which only contain the values
of the radius vector and its first derivative at the initial moment t0. Find the first few
terms of the series f and g.

Problem 3.8 Assume the Earth moves around the Sun in a circular orbit. Also,
assume that the mass of the Earth is negligible. Write a program to apply expansions
(2.53) and (2.55) to calculate Earth’s trajectory using only terms up to �t . Even if
the initial velocity is not quite correct, the Earth should return to its initial position
after each revolution. Experiment with different time steps to find the accuracy of
the method.
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Hamiltonian mechanics

The formalism of the previous chapters used a rather arbitrary coordinate system.
In the Hamiltonian formalism the coordinates are chosen in quite a different way to
reflect more deeply the dynamical properties of the system. In this chapter we derive
the Hamiltonian equations of motion. The results of this chapter are later needed
mainly to derive some standard results that are the starting point for further studies.
The same results can also be obtained in a more traditional way, but the Hamiltonian
approach makes the calculations considerably shorter and more straightforward.

Hamiltonian mechanics and its applications to mechanics in general are ex-
plained more extensively in many books on theoretical mechanics. This chapter is
based mainly on Goldstein (1950).

4.1 Generalised coordinates

We have this far used ordinary Euclidean rectangular coordinates to describe posi-
tions and velocities of the objects. They are purely geometric quantities that describe
the system in a very simple and understandable way. However, they do not tell us
anything about the dynamic properties of the system nor do they utilise any specific
features of the system. We now want to find a different kind of description in terms
of quantities which do not have these problems.

Motions of bodies may be constrained in various ways. For example, two points
of a solid body must always be at the same distance from each other. If the constraint
can be expressed as a function of the radius vectors r i and time t in the form

f (r1, . . . , rn, t) = 0, (4.1)

the constraint is called holonomic. In order to describe the motion of n bodies we
need 3n coordinates, but if there are constraints, all coordinates are not independent.
Each independent holonomic constraint can be used to eliminate one coordinate.

80
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Let us now assume that the actual number of degrees of freedom of our system is
m. For the full description of such a system we will need m quantities q1, . . . , qm .
The original coordinates are obtained from these using the transformation

r1 = r1(q1, . . . , qm, t),
...

rn = rn(q1, . . . , qm, t).

(4.2)

The quantities qi are called generalised coordinates. They need not be any geomet-
ric quantities. They can be distances, angles, areas as well as angular momenta,
temperatures etc.

Whatever the coordinates qi are, the state of the system can be considered as a
point S = S(q1, . . . , qm) in a Euclidean m-dimensional configuration space, and the
qi are rectangular coordinates of this space. The configuration space is an abstract
space that has nothing to do with the actual geometry of the system.

4.2 Hamiltonian principle

Dynamic properties of the system can be described by the Lagrangian function L

L = L(q1, . . . , qm, q̇1, . . . , q̇m, t) = T − V, (4.3)

where T is the kinetic energy and V the potential energy (Lagrange 1811). We now
consider the changes in the system in some finite interval of time t ∈ [t1, t2]. The
points S1 and S2 of the configuration space correspond to the state of the system
at the times t1 and t2, respectively. In this time interval the system evolves along a
path C in the configuration space from S1 to S2. If the forces are conservative, the
system will evolve in the time interval [t1, t2] in such a way that the line integral∫

C
L dt (4.4)

obtains its extremum. This extremum principle is called the Hamiltonian principle
(Hamilton 1834).

The Hamiltonian principle is but one of various principles that in one way or
another tell that a dynamic system always tends to evolve in the most ‘practical’
or ‘economical’ way. Mechanics can be based on several other similar principles,
which cannot be directly derived from Newton’s laws. We could here adopt some
other principle, which might be slightly more understandable intuitively, and use
it to derive the Hamiltonian principle, but the advantage would not be worth the
trouble.
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x

y

h(x)

(x1, y1)

(x2, y2)

Figure 4.1 Variational calculus is used to find a path giving an extremum to a
functional (solid line). The function h = h(x) represents an arbitrary deviation
from the optimal path.

4.3 Variational calculus

To use the Hamiltonian principle we need some mathematical tools. Consider first
the following simple situation: we have to find a function y = y(x) in the range
x ∈ [x1, x2] such that the integral

J =
∫ x2

x1

f (y, y′, x) dx (4.5)

of a known function f = f (y, y′, x), where y′ = dy/dx , attains its extremum value.
We can further assume that the points y1 = y(x1) and y2 = y(x2) are given in
advance.

First we have to parametrise the different possibilities. Assume that y(x, 0) is
the function sought for. Other possible functions can then be expressed as

y(x, a) = y(x, 0) + ah(x), (4.6)

where h is an arbitrary function that vanishes at the endpoints of the interval [x1, x2]
(Fig. 4.1).

Now the value of J obviously depends on the parameter a:

J (a) =
∫

f (y(x, a), y′(x, a), x) dx (4.7)

and if J is to have an extremum when a = 0, the derivative of J with respect to a
must vanish at a = 0:

∂ J

∂a

∣∣∣∣
a=0

= 0. (4.8)

Now we just have to calculate this derivative of J :

∂ J

∂a
=
∫ x2

x1

(
∂ f

∂y

∂y

∂a
+ ∂ f

∂ y′
∂ y′

∂a

)
dx . (4.9)
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Let us first study the second term:

∫ x2

x1

∂ f

∂ y′
∂ y′

∂a
dx

=
∫ x2

x1

∂ f

∂ y′
∂2 y

∂x∂a
dx

=
∣∣∣∣
x2

x1

∂ f

∂ y′
∂y

∂a
−
∫ x2

x1

d

dx

(
∂ f

∂ y′

)
∂y

∂a
dx .

Here ∂y/∂a = h(x), which vanishes at the ends of the interval. Thus the substitution
term is zero, and the derivative of J is

∂ J

∂a
=
∫ x2

x1

(
∂ f

∂y
− d

dx

∂ f

∂ y′

)
∂y

∂a
dx . (4.10)

We will denote the variation of X by δX . This is defined as

δX = ∂ X

∂a

∣∣∣∣
a=0

da. (4.11)

Remember that δX is just an abbreviation for this expression and not a real derivative
operator.

Next we multiply (4.10) by da and evaluate both sides at a = 0:

δ J =
∫ x2

x1

(
∂ f

∂y
− d

dx

∂ f

∂ y′

)
δy dx . (4.12)

If f is to yield an extremum, this must vanish. Since δy = h(x) da is arbitrary, the
integral can vanish only if the integrand is everywhere zero:

∂ f

∂y
− d

dx

∂ f

∂ y′ = 0. (4.13)

This is known as the Lagrange (or Euler–Lagrange) equation. Its solution is the
function y that makes the integral (4.5) attain its extremum value.

If there are more than one y functions, the generalisation is obvious. The integral
is now:

J =
∫ x2

x1

f (y1(x), . . . , yn(x), y′
1(x), . . . , y′

n(x), x) dx . (4.14)
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Again we regard J as a function of a parameter a, where a parametrises the different
possibilities:

y1(x, a) = y1(x, 0) + ah1(x),
...

yn(x, a) = yn(x, 0) + ahn(x).

(4.15)

The variation δ J of the integral is calculated as before. We get

δ J =
∫ x2

x1

n∑
i=1

(
∂ f

∂ yi
− d

dx

∂ f

∂ y′
i

)
δyi dx . (4.16)

The functions hi are fully arbitrary independent functions, and so are the yi . Thus
for every i we must have

∂ f

∂ yi
− d

dx

∂ f

∂ y′
i

= 0, i = 1, . . . , n. (4.17)

Example 4.1 What is the shortest route between the points (x1, y1) and (x2, y2)?
If the equation of the path joining the two points is y = y(x), the length of the

line element is

ds =
√

dx2 + dy2 =
√

1 + y′2 dx

and the length of the whole path is

s =
∫ x2

x1

√
1 + y′2 dx .

This is already of the form (4.5). The function f is the square root in the integral.
Now the derivatives needed for the Lagrange equation are readily found:

∂ f

∂y
= 0,

∂ f

∂ y′ = y′√
1 + y′2

,

d

dx

∂ f

∂ y′ = y′′√
1 + y′2

− y′2 y′′

(1 + y′2)3/2
.

Thus the Lagrange equation is simply

y′′ = 0.

The solution of this is obviously y = ax + b, where the constants a and b are
determined by the requirement that the path must pass through the given points.
But this is the equation of a straight line, and so we have managed to prove the
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profound result that in Euclidean space the shortest paths (or geodesics) are straight
lines.

4.4 Lagrangian equations of motion

The Hamiltonian principle requires that the integral∫
L(q1, . . . , qm, q̇1, . . . , q̇m, t) dt (4.18)

must attain an extremum. The integral is suitably of the form (4.5) when we replace
x with the time t . Thus the Lagrange equations give immediately

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0, i = 1, . . . , m. (4.19)

These equations are called the Lagrangian equations of motion.
As an example consider the planar two-body problem. The Lagrangian is (omit-

ting a constant factor, the mass of the planet)

L = T − V = 1

2
v2 + µ

r
= 1

2
(ẋ2 + ẏ2) + µ√

x2 + y2
, (4.20)

and hence

∂L

∂x
= − xµ

(x2 + y2)3/2
,

∂L

∂y
= − yµ

(x2 + y2)3/2
,

∂L

∂ ẋ
= ẋ,

∂L

∂ ẏ
= ẏ.

The equations of motion are thus

− xµ

(x2 + y2)3/2
− ẍ = 0,

− yµ

(x2 + y2)3/2
− ÿ = 0.

(4.21)

This is just the Newtonian equation of motion in component form.
This whole business may not look very useful since we get just the same equations

as before. However, now we can easily select a more suitable coordinate frame.
In our example the potential depends on the distance r only, which makes polar
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coordinates the natural choice. The Lagrangian is then

L = 1

2
(ṙ2 + r2φ̇2) + µ

r
. (4.22)

Again we find the derivatives:

∂L

∂r
= r φ̇2 − µ

r2
,

∂L

∂φ
= 0,

∂L

∂ ṙ
= ṙ ,

∂L

∂φ̇
= r2φ̇.

The equations of motion are

r φ̇2 − µ/r2 − r̈ = 0,

d

dt
(r2φ̇) = 0.

(4.23)

This already shows some advantages of the Lagrangian formalism. The equations
in polar coordinates were as easily obtained as the ordinary equations in rectangular
coordinates. Moreover, the latter equation tells immediately that the surface velocity
is constant. Thus we obtained Kepler’s second law as a by-product without any extra
effort.

Obviously the Lagrangian formalism is in some ways better than the usual New-
tonian formalism. It applies well to many problems of mechanics. In celestial me-
chanics its superiority is not quite as pronounced, and for us it is just an intermediate
step.

Example 4.2 Derive the equation of motion for a pendulum with a mass m and
length l.

In this case we need only the angle φ between the vertical and the length l of
the shaft of the pendulum to describe the state of the system. The kinetic energy is
T = 1

2 ml2φ̇2 and the potential energy V = mgl(1 − cos φ), assuming that the grav-
itational field is constant and taking the lowest point of the pendulum to correspond
to zero potential energy. The Lagrangian is now

L = 1

2
ml2φ̇2 − mgl(1 − cos φ),
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from which

∂L

∂φ
= −mgl sin φ,

∂L

∂φ̇
= ml2φ̇.

The equation of motion of the pendulum is then

−mgl sin φ − ml2φ̈ = 0

or

φ̈ + g

l
sin φ = 0.

If the angle of oscillation is small, sin φ ≈ φ, and the equation becomes the
familiar equation of a simple harmonic oscillator:

φ̈ + g

l
φ = 0.

4.5 Hamiltonian equations of motion

Assume we have a system with m degrees of freedom and a Lagrangian

L = L(q1, . . . , qm, q̇1, . . . . , qm, t). (4.24)

It can happen that one of the coordinates does not appear in the Lagrangian. Such
a coordinate is called cyclic. Unfortunately the corresponding velocity can still
appear in the Lagrangian, and the number of equations is not reduced. We would
like somehow to eliminate the equations corresponding to cyclic coordinates. This
is what happens in the Hamiltonian formalism.

A momentum has a deeper relation to the dynamics of a system than a mere
velocity. So we replace the generalised velocities of the Lagrangian formalism
with generalised momenta. In a rectangular frame we have

∂L

∂ ẋ
= ∂T

∂ ẋ
= ∂

∂ ẋ

m

2
(ẋ2 + ẏ2 + ż2) = mẋ = px . (4.25)

We now generalise this and define generalised momenta pi as

pi = ∂L

∂q̇i
. (4.26)

The Lagrangian must be replaced by an entity which depends on the variables
qi and pi . This is accomplished by the Legendre transformation. Let f = f (x, y)
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be a function of two variables x and y. Its total differential is

d f = ∂ f

∂x
dx + ∂ f

∂y
dy = u dx + v dy (4.27)

where u and v are the partial derivatives of f . Now we define a function g in the
following way:

g = ux − f (x, y). (4.28)

The total differential of this is

dg = u dx + x du − u dx − v dy = x du − v dy.

Because this is a total differential, we must have

x = ∂g

∂u
, v = −∂g

∂y

or

dg = ∂g

∂u
du + ∂g

∂y
dy.

So we can consider g as a function of u and y.
In a similar manner the Lagrangian can be transformed to obtain the Hamiltonian

H of the system:

H = H (q, p, t) =
m∑

i=1

q̇i pi − L(q, q̇, t). (4.29)

Here we have denoted q = (q1, . . . , qm) etc. In what follows, all sums are assumed
to be from 1 to m if the limits are not shown explicitly. We now find the total
differential of the Hamiltonian:

dH =
∑

q̇i dpi +
∑

pi dq̇i −
∑ ∂L

∂qi
dqi −

∑ ∂L

∂q̇i
dq̇i − ∂L

∂t
dt

=
∑

q̇i dpi +
∑

pi dq̇i −
∑ ∂L

∂qi
dqi −

∑
pi dq̇i − ∂L

∂t
dt.

According to the Lagrangian equations we have

∂L

∂qi
= d

dt

∂L

∂ q̇i
= d

dt
pi = ṗi ,

and so

dH =
∑

q̇i dpi −
∑

ṗi dqi − ∂L

∂t
dt. (4.30)
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By the definition of the total differential we have

dH =
∑ ∂ H

∂qi
dqi +

∑ ∂ H

∂ pi
dpi + ∂ H

∂t
dt. (4.31)

These two expressions (4.30) and (4.31) for dH have to be identical. So we must
have

∂ H

∂ pi
= q̇i ,

∂ H

∂qi
= − ṗi ,

∂ H

∂t
= −∂L

∂t
.

(4.32)

These are called the Hamiltonian canonical equations of motion. We have replaced
m second order equations by 2m first order equations (the last one of (4.32) is
not really an equation of motion) in which coordinates and momenta must be
considered as independent variables. They are called canonical coordinates and
momenta. They are generalised coordinates and momenta, and their dimension can
be almost anything. However, the product of the corresponding coordinate and
momentum must always have the dimension of time × energy. The variables qi and
pi are called conjugate variables, and although they are independent, they describe
quantities that are related in a certain way. If we have fixed, say, qi then pi cannot
be chosen arbitrarily. If qi is distance, pi is the corresponding momentum; if qi is
an angle, pi is the angular momentum; if qi is time, pi is energy, etc.

4.6 Properties of the Hamiltonian

If qm does not appear in the Lagrangian, it is not present in the Hamiltonian
either. Then the partial derivative of H with respect to qm vanishes, and it is seen
immediately from the equations of motion that the corresponding momentum pm

is constant. Thus we can use symmetries of the system to simplify its equations of
motion.

Next, we will study how the Hamiltonian changes with time. We take the time
derivative of the Hamiltonian:

Ḣ =
∑(

∂ H

∂qi
q̇i + ∂ H

∂ pi
ṗi

)
+ ∂ H

∂t
. (4.33)

We use the equations of motion to replace q̇i and ṗi :

Ḣ =
∑(

∂ H

∂qi

∂ H

∂ pi
− ∂ H

∂ pi

∂ H

∂qi

)
+ ∂ H

∂t
,
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and hence

dH

dt
= ∂ H

∂t
. (4.34)

This shows that H will change with time only if time is explicitly present in its
expression. If the Hamiltonian does not depend explicitly on time it is a constant
of motion.

We show now that H is equal to the total energy if the transformation equations
(4.2)

r i = r i (q1, . . . , qm), i = 1, . . . , n

do not depend explicitly on time and if the potential depends on the coordinates qi

only.
To prove this we need some auxiliary results. First of all, if the transformation

equations (4.2) do not contain time explicitly, the kinetic energy T is a quadratic
form of the velocities q̇i .

In rectangular coordinates we have

T =
n∑

i=1

1

2
miv

2
i .

We apply the transformation (4.2) to this:

T =
n∑

i=1

1

2
mi

(∑
j

∂r i

∂q j
q̇ j + ∂r i

∂t

)2

=
n∑

i=1

1

2
mi

(
∂r i

∂t

)2

+
∑

j

q̇ j

(
n∑

i=1

mi
∂r i

∂t
· ∂r i

∂q j

)

+
∑

j

∑
k

q̇ j q̇k

(
n∑

i=1

mi
∂r i

∂q j
· ∂r i

∂qk

)
.

If the time derivatives of the r i vanish, only the last sum will remain, and T is of
the form

T =
∑

j

∑
k

a jkq̇ j q̇k . (4.35)

Another auxiliary result is Euler’s theorem: if f is a homogeneous form of degree
n on the variables qi , then ∑

qi
∂ f

∂qi
= n f. (4.36)

In fact we need this only when n = 2, but we can as well prove the general case.
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Assume that f is of the form

f =
∑

i1

· · ·
∑

in

ai1···in qi1 · · · qin .

When n = 1, we have f =∑ ai qi and
∑

qi (∂ f/∂qi ) =∑ qi ai = f . Thus the
theorem holds.

Assume then that the theorem is valid for all forms of degree n, and let f be of
degree n + 1

f =
∑

i1

· · ·
∑
in+1

ai1···in+1qi1 · · · qin+1

=
∑
in+1

qin+1

(∑
i1

· · ·
∑

in

ai1···in+1qi1 · · · qin

)

=
∑
in+1

qin+1 f ′,

where f ′ is a homogeneous form of degree n. The expression on the left hand side
in Euler’s theorem is

∑
k

qk
∂ f

∂qk
=
∑

qk
∂

∂qk

(∑
in+1

qin+1 f ′
)

=
∑

k

qk

(∑
in+1

∂qin+1

∂qk
f ′ +

∑
in+1

qin+1

∂ f ′

∂qk

)

=
∑
in+1

(∑
k

qk
∂qin+1

∂qk
f ′ + qin+1

∑
k

qk
∂ f ′

∂qk

)
.

We apply the induction assumption to the latter sum:

∑
k

qk
∂ f

∂qk
=
∑
in+1

(
qin+1 f ′ + qin+1n f ′)

= (n + 1)
∑
in+1

qin+1 f ′ = (n + 1) f.

Thus the theorem holds also for n + 1, and hence for all values of n.
Now it is easy to show that H is the total energy. Since the potential V does not

depend on the velocities q̇i , we have

pi = ∂L

∂q̇i
= ∂T

∂q̇i
, i = 1, . . . , m,
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and thus

H =
∑

q̇i pi − L =
∑

q̇i
∂T

∂q̇i
− L .

Because the kinetic energy is a quadratic form of the q̇i , we can use Euler’s theorem
(n = 2):

H = 2T − L = 2T − (T − V ) = T + V . (4.37)

Thus the Hamiltonian gives the total energy. However, we have to remember that
this may not be true if for example the transformations (4.2) depend explicitly on
time.

4.7 Canonical transformations

If the Hamiltonian is cyclic in one coordinate the corresponding equation of motion
has a trivial solution. Therefore it is advantageous to search for a coordinate frame
in which as many coordinates as possible become cyclic. Writing the corresponding
Hamiltonian can be difficult, and therefore we have to study how to transform from
one frame to another.

Since the momenta pi are variables independent of the coordinates, we have to
find both the new coordinates Qi and the new momenta Pi as functions of the old
ones:

Qi = Qi (q, p, t),

Pi = Pi (q, p, t).
(4.38)

A nice feature of the Hamiltonian formalism is that if we use proper transfor-
mations the new variables will also be canonical and the new equations of motion
will have exactly the same form as in the original frame:

Q̇i = ∂K

∂ Pi
, −Ṗi = ∂K

∂ Qi
, (4.39)

where K is the new Hamiltonian. A transformation preserving the form of the
equations is called canonical. Now we have to find what kind of transformations
are canonical.

We begin by expressing the Hamiltonian principle in terms of the old and new
coordinates:

δ

∫ t2

t1

L dt =
{

δ
∫ t2

t1

(∑
pi q̇i − H

)
dt = 0

δ
∫ t2

t1

(∑
Pi Q̇i − K

)
dt = 0.

(4.40)
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These integrals can differ only by something whose variation vanishes. A function
that depends on the end points t1 and t2 only is such a function, because the variation
always vanishes at both ends of the interval. Thus the integrands can differ by a
total time derivative of some function, since in that case∫ t2

t1

dF

dt
dt = F(t2) − F(t1). (4.41)

(In fact the integrands can differ also by a constant factor, but that means just a
change of units.) The function F is the generating function of the transformation.
It has to depend on both the old and new variables in a suitable way. It can have
any of the following four forms:

F = F1(q, Q, t),

F = F2(q, P, t),

F = F3(p, Q, t),

F = F4(p, P, t).

(4.42)

The transformation is canonical if the difference of the integrands in Eq. (4.40)
equals the time derivative of the generating function:∑

pi q̇i − H =
∑

Pi Q̇i − K + dF

dt
. (4.43)

If the generating function is of the form F1, this condition is∑
pi q̇i − H =

∑
Pi Q̇i − K +

∑ ∂ F1

∂qi
q̇i +

∑ ∂ F1

∂ Qi
Q̇i + ∂ F1

∂t
. (4.44)

Since the q and Q are independent, this equation holds identically if and only if

pi = ∂ F1

∂qi
,

Pi = − ∂ F1

∂ Qi
,

K = H + ∂ F1

∂t
.

(4.45)

At least in principle the Qi can be solved from the expressions of the pi and be
substituted into the expressions of the Pi to give the transformation equations

Qi = Qi (q, p, t),

Pi = Pi (q, p, t).
(4.46)

The corresponding equations for a generating function F2 can be obtained using
a suitable Legendre transformation to change variables.
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We begin by writing the differential of the generating function F1:

dF1 =
∑ ∂ F1

∂qi
dqi +

∑ ∂ F1

∂ Qi
dQi + ∂ F1

∂t
dt.

We substitute here the previously found derivatives of F1:

dF1 =
∑

pi dqi −
∑

Pi dQi + ∂ F1

∂t
dt.

Next, apply the Legendre transform

F2 = F1 −
∑ ∂ F1

∂ Qi
Qi = F1 +

∑
Pi Qi , (4.47)

to get the differential of F2

dF2 =
∑

pi dqi −
∑

Pi dQi +
∑

Pi dQi +
∑

Qi dPi + ∂ F1

∂t
dt

=
∑

pi dqi +
∑

Qi dPi + ∂ F1

∂t
dt.

(4.48)

By definition the differential of F2 is

dF2 =
∑ ∂ F2

∂qi
dqi +

∑ ∂ F2

∂ Pi
dPi + ∂ F2

∂t
dt. (4.49)

Because the expressions (4.48) and (4.49) must be identical, we get

pi = ∂ F2

∂qi
,

Qi = ∂ F2

∂ Pi
.

(4.50)

The generating functions F3 and F4 can be handled similarly by changing vari-
ables with the Legendre transform. We get the following transformation equations

F = F1(q, Q, t) pi = ∂ F1

∂qi
Pi = − ∂ F1

∂ Qi

F = F2(q, P, t) pi = ∂ F2

∂qi
Qi = ∂ F2

∂ Pi

F = F3(p, Q, t) qi = −∂ F3

∂ pi
Pi = − ∂ F3

∂ Qi

F = F4(p, P, t) qi = −∂ F4

∂ pi
Qi = ∂ F4

∂ Pi
.

(4.51)

In all cases the Hamiltonian is transformed in the same way

K = H + ∂ F

∂t
. (4.52)
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4.8 Examples of canonical transformations

Consider the generating function

F = F2(q, P) =
∑

qi Pi .

Then we have

pi = ∂ F

∂qi
= Pi , Qi = ∂ F

∂ Pi
= qi .

Thus the transformation is an identity.
A simple but interesting transformation is obtained using the generating function

F = F1(q, Q) =
∑

qi Qi .

Now

pi = ∂ F

∂qi
= Qi , Pi = − ∂ F

∂ Qi
= −qi .

The new coordinates are identical to the old momenta and the new momenta are
the old coordinates with the sign changed. Thus there is no real distinction between
coordinates and momenta.

An ordinary geometric transformation, which replaces the old coordinates qi

with new ones Qi , is generated by

F = F2(q, P) =
∑

fi (q, t)Pi , (4.53)

where the fi are arbitrary functions. Then

Qi = ∂ F

∂ Pi
= fi (q, t). (4.54)

Since the fi can be any functions, all such point transformations are canonical.
If we find a set of canonical geometric coordinates qi , we can keep the equations
of motion canonical in all geometric transformations by choosing the momenta
properly.

4.9 The Hamilton–Jacobi equation

We noticed that if the coordinate qi does not appear in the Hamiltonian the corre-
sponding conjugate momentum pi is constant. Similarly, if the Hamiltonian does
not contain pi then qi is constant. Obviously it is worthwhile to look more closely
how to transform the Hamiltonian to a form which contains as few variables as
possible.

The ideal case would be to have a Hamiltonian vanishing identically, in which
case the solution of the equations of motion is trivial. We now try to find a suitable
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canonical transformation, denoted traditionally by S. We require that S is of the
form F2, or

S = S(q1, . . . , qm, P1, . . . , Pm, t). (4.55)

The old momenta are obtained as derivatives of the generating function:

pi = ∂S

∂qi
. (4.56)

The old and new Hamiltonians are related by

H + ∂S

∂t
= K = 0. (4.57)

We now express the momenta in H as partial derivatives of the generating function.
Then the equation (4.57) becomes

H

(
q1, . . . , qm,

∂S

∂q1
, . . . ,

∂S

∂qm
, t

)
+ ∂S

∂t
= 0. (4.58)

This is the Hamilton–Jacobi equation. Its solution is the function S which depends
on m coordinates and time. Since there are m + 1 variables, the solution will con-
tain m + 1 constants of integration α1, . . . , αm+1. Equation (4.58) contains only
derivatives of S, and therefore S will be determined only up to an additive constant,
i.e. S + C , where C is a constant, is also a valid solution. This constant is one of
the integration constants; let it be αm+1. This additive constant can be neglected
because it does not affect the transformation for which we are searching. Thus the
generating function is of the form

S = S(q1, . . . , qm, α1, . . . , αm, t). (4.59)

It seems that S does not tell how the momenta are transformed. We know, though,
that the new momenta are constants and appear as arguments of S. Thus it is natural
to take the constants αi as the new momenta:

Pi = αi , i = 1, . . . , m. (4.60)

The constant values of the new coordinates are obtained as derivatives of the
generating function with respect to the momenta Pi or the constants αi :

Qi = ∂S(q1, . . . , qm, α1, . . . , αm, t)

∂αi
= βi . (4.61)

If the values of the variables qi and pi are known for a certain initial instant of
time t0, they can be substituted into the expressions for the momenta (4.56):

pi = ∂S(q1, . . . , qm, α1, . . . , αm, t)

∂qi
. (4.62)
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From these we can solve the constants αi . Substitution of these constants and
coordinates qi at t0 into (4.61) then gives the values of the new coordinates
βi .

In practice, the work is not quite that simple. Unfortunately we have replaced
the simple Hamiltonian equations of motion with a complicated partial differential
equation, and there is no guarantee that it can be solved. There is no general theory
for solving such equations. We now return to the familiar two-body problem and
try to find a way to solve the Hamilton–Jacobi equation.

4.10 Two-body problem in Hamiltonian mechanics: two dimensions

We start with the simple planar problem. However, the results obtained here can be
used later when dealing with the general case.

The kinetic energy of the planet of mass m with respect to the Sun in polar
coordinates is

T = 1

2
m(ṙ2 + r2φ̇2), (4.63)

and its potential energy is

V = −µm/r, µ = G(m + M�). (4.64)

The momenta corresponding to the coordinates φ and r are

pφ = ∂T

∂φ̇
= mr2φ̇,

pr = ∂T

∂ ṙ
= mṙ .

(4.65)

We take the following relations as known:

h = 1

2
v2 − µ

r
,

k = r2φ̇ =
√

aµ(1 − e2),

h = −µ/2a.

(4.66)

The Hamiltonian in terms of the coordinates r and φ and their conjugate momenta
is

H = T + V = 1

2m

(
p2

r + p2
φ

r2

)
− µm

r
. (4.67)

Since h is the total energy per unit mass, we have also

H = mh. (4.68)
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Because the gravitational potential depends on the distance only, it is natu-
ral to use polar coordinates. Then the Hamiltonian is cyclic in φ. We could use
this result immediately. However, we will carry out all calculations in detail to
see how the cyclic coordinates behave in the solution of the Hamilton–Jacobi
equation.

We try to find a coordinate system in which the Hamiltonian is identically zero.
Let the generating function of this transformation be

S = S(r, φ, P1, P2, t), (4.69)

where P1 and P2 are the new momenta, which must be constants. The Hamilton–
Jacobi equation is

H

(
r,

∂S

∂r
,
∂S

∂φ

)
+ ∂S

∂t
= 0

or

1

2m

((
∂S

∂r

)2

+ 1

r2

(
∂S

∂φ

)2
)

− µm

r
+ ∂S

∂t
= 0. (4.70)

There is only one rather general method for solving such partial differential
equations: separation of variables. We assume that the solution can be expressed
as

S(r, φ, t) = Sr (r ) + Sφ(φ) + St (t), (4.71)

where Sr depends only on the distance r , Sφ only on the angle φ and St only on the
time t . Now we substitute this trial solution into our Eq. (4.70):

1

2m

((
dSr

dr

)2

+ 1

r2

(
dSφ

dφ

)2
)

− µm

r
= −dSt

dt
. (4.72)

Here the left hand side is a function of r and φ only and the right hand side depends
only on time. The equation can hold only if both sides have the same constant value.
We denote this value by α1. Now the original equation can be split into two simpler
equations:

dSt

dt
= −α1,

1

2m

((
dSr

dr

)2

+ 1

r2

(
dSφ

dφ

)2
)

− µm

r
= α1.
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In the latter equation only the term (dSφ/dφ)2 depends on φ, and so it must be an-
other constant, α2. Thus we have three ordinary differential equations to determine
S:

dSt

dt
= −α1,

dSφ

dφ
= α2,

dSr

dr
=
√

2m
(
α1 + µm

r

)
− α2

2

r2
.

(4.73)

The generating function is then

S = −α1t + α2φ +
∫ r

dr

√
2m
(
α1 + µm

r

)
− α2

2

r2
. (4.74)

We will need only the derivatives of this, so there is no need to evaluate the integral.
When we take the integration constants α1 and α2 as the new momenta we

get

P1 = α1,

P2 = α2,

Q1 = ∂S

∂ P1
= ∂S

∂α1
,

Q2 = ∂S

∂ P2
= ∂S

∂α2
.

(4.75)

We now have to determine the constants α1 and α2. Since

H + ∂S

∂t
= H − α1 = 0,

we have

α1 = H = mh. (4.76)

Hence α1 (and the momentum P1) is the total energy in the heliocentric coordinate
frame. Using the properties of the generating function we have

∂S

∂φ
= pφ,
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and we saw previously that ∂S/∂φ = α2. Therefore

α2 = pφ = mr2φ̇ = mk = m
√

aµ(1 − e2). (4.77)

This is the length of the angular momentum vector of the planet. The new momenta
are now

P1 = α1 = mh = −mµ

2a
,

P2 = α2 = m
√

aµ(1 − e2).
(4.78)

It remains to find the new coordinates Q1 and Q2. They are determined by the
generating function:

Q1 = ∂S

∂α1
= −t +

∫
m dr√

2m(α1 + µm/r ) − (α2/r )2

= −t + I1,

Q2 = ∂S

∂α2
= φ − α2

m

∫
m dr

r2
√

2m(α1 + µm/r ) − (α2/r )2

= φ − α2

m
I2.

(4.79)

Evaluating the integrals I1 and I2 is the most tedious part of the problem. We begin
by substituting the values of α1 and α2 obtained from (4.78):

I1 =
∫

m dr√
2m (−mµ/(2a) + mµ/r ) − m2aµ(1 − e2)/r2

= 1√
µ

∫
r dr√

−r2/a + 2r − a(1 − e2)
,

I2 =
∫

m dr

r2
√

2m (−mµ/(2a) + mµ/r ) − m2aµ(1 − e2)/r2

= 1√
µ

∫
dr

r
√

−r2/a + 2r − a(1 − e2)
.

(4.80)

The usual trick is to use the eccentric anomaly, which often simplifies such integrals
considerably. We replace r with E :

r = a(1 − e cos E),

dr = ae sin E dE .
(4.81)
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The integral I1 is now easily evaluated:

I1 = 1√
µ

∫
a(1 − e cos E)ae sin E dE√

−a(1 − e cos E)2 + 2a(1 − e cos E) − a(1 − e2)

= a3/2

√
µ

∫
e sin E(1 − e cos E) dE√−1 + 2e cos E − e2 cos2 E + 2 − 2e cos E − 1 + e2

= a3/2

√
µ

∫
e sin E(1 − e cos E) dE

e sin E

= a3/2

√
µ

∫
(1 − e cos E) dE

= a3/2

√
µ

(E − e sin E).

(4.82)

The factor a−3/2µ−1/2 is the inverse of the mean motion, and thus

Q1 = −t + I1 = −t + 1

n
(E − e sin E) = −t + M

n
,

and since the mean anomaly M is M = n(t − τ ),

Q1 = −τ. (4.83)

Thus the variable Q1 is essentially the time of perihelion (with a minus sign).
Calculation of the integral I2 begins in a similar manner:

I2 = 1√
µ

∫
ae sin E dE

a(1 − e cos E)
√

ae sin E

= 1√
aµ(1 − e2)

∫ √
1 − e2 dE

1 − e cos E
.

(4.84)

We need here one more substitution. The integrand resembles the expression (3.36)
for sin φ, where φ is the true anomaly. Let us here denote the true anomaly by the
symbol f . Then

sin f =
√

1 − e2
sin E

1 − e cos E
.

Differentiating this we get

cos f d f =
√

1 − e2
(1 − e cos E) cos E − e sin2 E

(1 − e cos E)2
dE

=
√

1 − e2
cos E − e

(1 − e cos E)2
dE

=
√

1 − e2

1 − e cos E
cos f dE,
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from which

d f =
√

1 − e2

1 − e cos E
dE .

Thus the integrand of I2 is just d f , and the value of the integral is simply f . The
variable Q2 is

Q2 = φ − α2

m
I2 = φ − α2

m

f√
aµ(1 − e2)

= φ − f,

where the last equality is obtained by substituting the expression (4.77) for α2. Thus
we get

f = φ − Q2. (4.85)

The true anomaly f is measured from the perihelion and φ from some arbitrary
direction. Thus Q2 must be the the angular distance of the perihelion from this
arbitrary direction. If this direction is the ascending node, Q2 is just the argument
of perihelion ω.

To summarise:

K = 0,

Q1 = −τ,

Q2 = ω,

P1 = mh,

P2 = m
√

aµ(1 − e2).

(4.86)

We have now found a coordinate frame in which the Hamiltonian vanishes and
all coordinates and momenta are constants. In other words, the canonical variables
in the equations of motion are also integration constants of the equations!

Since the original Hamiltonian does not depend on time the equation

H + ∂S

∂t
= 0

shows that St must be −α1t , where α1 is the constant value of H . Further, because
H does not depend on the angle φ, it follows from the Hamiltonian equations of
motion that the momentum pφ is constant and therefore

pφ = ∂S

∂φ
= dSφ

dφ

is constant, too. Hence S must be α2φ.
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The part of the generating function corresponding to cyclic coordinates can
be written directly without having to carry out the separation of variables in the
Hamilton–Jacobi equation.

4.11 Two-body problem in Hamiltonian mechanics: three dimensions

The kinetic energy of a planet in spherical coordinates is

T = 1

2
m(ṙ2 + r2θ̇2 + r2 cos2 θφ̇2)

and the potential energy is as before

V = −µm/r.

The conjugate momenta corresponding to the spherical coordinates are

pr = mṙ ,

pθ = mr2θ̇ ,

pφ = mr2 cos2 θφ̇.

(4.87)

The Hamiltonian is

H = 1

2m

(
p2

r + p2
θ

r2
+ p2

φ

r2 cos2 θ

)
− µm

r
(4.88)

and the Hamilton–Jacobi equation is

1

2m

((
∂S

∂r

)2

+ 1

r2

(
∂S

∂θ

)2

+ 1

r2 cos2 θ

(
∂S

∂φ

)2
)

− µm

r
+ ∂S

∂t
= 0. (4.89)

Using a trial solution

S = St (t) + Sr (r ) + Sθ (θ ) + Sφ(φ) (4.90)

we can separate the Hamilton–Jacobi equation into four equations:

dSt

dt
= −α1,

dSφ

dφ
= α2,(

dSθ

dθ

)2

+ α2
2

cos2 θ
= α2

3,(
dSr

dr

)2

+ α2
3

r2
= 2m

(
α1 + µm

r

)
.

(4.91)
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Before continuing, we will study the meaning of the constants αi . As before we
have

α1 = mh. (4.92)

To find the constant α2 we use the second equation (4.91) and notice that the
derivative of the generating function on the left hand side is the momentum pφ:

α2 = ∂S

∂φ
= pφ = mr2 cos2 θφ̇.

Since the projection of the radius vector on the xy plane is r cos θ and the
projection of the velocity is r cos θφ̇, we suspect that α2 is a projection of the
product of r and ṙ . Let us find the z-component of the angular momentum mr × ṙ .
It is obtained by taking the vector product of the projections of mr and ṙ on the xy
plane. Since only the component of ṙ perpendicular to r affects this product, the
z-component of the angular momentum is

mr cos θr cos θφ̇ = mr2 cos2 θφ̇ = α2.

Thus the constant α2 is the z-component of the angular momentum. It can be written
also as

α2 = m
√

aµ(1 − e2) cos ι. (4.93)

It remains to find the third constant:

α3 =
√(

∂S

∂θ

)2

+ α2
2

cos2 θ
=
√

p2
θ + p2

φ

cos2 θ

=
√

m2r4θ̇2 + m2r4 cos4 θφ̇2

cos2 θ

= mr2
√

θ̇2 + cos2 θφ̇2

= mr2 ḟ ,

(4.94)

where f is the angle measured in the direction of motion (i.e. the true anomaly).
But this is the total angular momentum, and hence

α3 = m
√

aµ(1 − e2). (4.95)

Now we know the new momenta:

P1 = α1 = mh,

P2 = α2 = m
√

aµ(1 − e2) cos ι,

P3 = α3 = m
√

aµ(1 − e2).

(4.96)
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Next we have to find the new coordinates. The generating function is

S = − tα1 + φα2 +
∫

dθ

√
α2

3 − α2
2

cos2 θ

+
∫

dr

√
2m
(
α1 + µm

r

)
− α2

3

r2
.

(4.97)

The new coordinates are the derivatives of this:

Q1 = ∂S

∂α1
= −t +

∫
m dr√

2m(α1 + µm/r ) − α2
3/r2

= −t + I1,

Q2 = ∂S

∂α2
= φ − α2

∫
dθ

cos2 θ

√
α2

3 − α2
2/ cos2 θ

= φ − α2 I3,

Q3 = ∂S

∂α3
= α3

∫
dθ√

α2
3 − α2

2/ cos2 θ

− α3

m

∫
m dr

r2
√

2m(α1 + µm/r ) − α2
3/r2

= α3(I4 − I2/m),

(4.98)

where I1 and I2 are the integrals evaluated in the previous section.
We still have to calculate the integrals I3 and I4. We begin with α3 I4. We re-

place α2 and α3 by their expressions in terms of the orbital elements (4.93) and
(4.95):

α3 I4 = α3

∫
dθ√

α2
3 − α2

2/ cos2 θ

=
∫

dθ√
1 − (α2/α3)2/ cos2 θ

=
∫

dθ√
1 − cos2 ι/ cos2 θ

=
∫

cos θ dθ√
cos2 θ − cos2 ι

.

(4.99)

We replace the angle θ by an angle η measured from the ascending node (Fig. 4.2).
From the sine formula of spherical trigonometry we get

sin θ

sin ι
= sin η

sin π/2

or

sin θ = sin ι sin η. (4.100)
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Figure 4.2 Quantities appearing in the solution of the three-dimensional Hamilton–
Jacobi equation.

This gives the formulae needed to transform the integral (4.99):

cos θ =
√

1 − sin2 ι sin2 η,

cos θ dθ = sin ι cos η dη.
(4.101)

Substitution into (4.99) gives

α3 I4 =
∫

sin ι cos η dη√
1 − sin2 ι sin2 η − cos2 ι

=
∫

sin ι cos η dη√
sin2 ι(1 − sin2 η)

=
∫

dη = η.

(4.102)

Thus we get

α3 I4 = η. (4.103)

The remaining integral is evaluated in a similar manner. We begin by eliminating
the constants α2 and α3:

α2 I3 = α2

∫
dθ

cos2 θ

√
α2

3 − α2
2/ cos2 θ

= α2

α3

∫
dθ

cos2 θ
√

1 − (α2/α3)2/ cos2 θ

=
∫

cos ι dθ

cos2 θ
√

1 − cos2 ι/ cos2 θ
.

(4.104)
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From spherical trigonometry we get (Fig. 4.2)

tan θ cot ι = sin χ, (4.105)

and hence

dθ

cos2 θ
= cos χ tan ι dχ,

1

cos2 θ
= 1 + tan2 θ = 1 + sin2 χ tan2 ι.

(4.106)

Substitution into the integral (4.104) gives

α2 I3 =
∫

cos ι cos χ tan ι dχ√
1 − (1 + sin2 χ tan2 ι) cos2 ι

=
∫

sin ι cos χ dχ√
1 − cos2 ι − sin2 χ sin2 ι)

=
∫

sin ι cos χ dχ√
sin2 ι(1 − sin2 χ )

=
∫

dχ = χ.

(4.107)

In summary, the new coordinates are

Q1 = −t + I1 = −t + M/n,

Q2 = φ − α2 I3 = φ − χ,

Q3 = α3 I4 − α3

m
I2 = η − α3

m
√

aµ(1 − e2)
f = η − f.

(4.108)

As before, Q1 = −τ . From Fig. 4.2 we can see that φ − χ is the longitude of
the ascending node and η − f the argument of perihelion. Thus the canonical
coordinates can be expressed in terms of the familiar orbital elements in a very
simple way:

Q1 = −τ,

Q2 = �,

Q3 = ω.

(4.109)

The corresponding momenta are

P1 = mh = −mµ

2a
,

P2 = m
√

aµ(1 − e2) cos ι,

P3 = m
√

aµ(1 − e2).

(4.110)
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We have now completely solved the two-body Hamilton–Jacobi equation. All
the canonical variables are constants, but just like the standard orbital elements they
can be used to determine unambiguously the position of the planet.

4.12 Delaunay’s elements

We have found a way to describe the two-body system in a manner which in a
certain sense is the simplest possible: we have found a coordinate frame in which
the Hamiltonian vanishes and all variables in the equations of motion are themselves
integration constants of the equations. Before leaving the two-body problem we will
introduce a slightly different set of canonical variables that is frequently used in
celestial mechanics.

The mass of the planet appears only as a multiplicative constant in the Hamilto-
nian and canonical momenta, and can as well be omitted. Thus we get the following
simplified canonical variables:

q1 = −τ,

q2 = �,

q3 = ω,

p1 = − µ

2a
,

p2 =
√

aµ(1 − e2) cos ι,

p3 =
√

aµ(1 − e2).

(4.111)

Except for the first one the coordinates qi are angles. To make the set of coordinates
more uniform we replace q1 with the mean anomaly M = n(t − τ ) keeping the
other coordinates intact. We require that

h = q2 = �,

g = q3 = ω,

l = n(t + q1),

H = p2 =
√

aµ(1 − e2) cos ι,

G = p3 =
√

aµ(1 − e2),

L =?

(4.112)

where h, g and l are the new coordinates and H , G and L the corresponding
momenta. The new coordinates are traditionally labelled by these symbols, which
should not be confused with the previously used h (energy per unit mass), H
(Hamiltonian), G (gravitational constant) and L (angular momentum).



4.13 Hamiltonian formulation of the three-body problem 109

We have to find the new Hamiltonian K and the momentum L in such a way that
the set of variables remains canonical. It is quite easy to guess that the function

F =
(

nL − 3µ

2a

)
(t + q1) + q2 H + q3G (4.113)

will generate the correct transformation. The constant in the first term is needed to
make the new variables as simple as possible. We get

p1 = ∂ F

∂q1
= −3µ

2a
+ nL ,

from which

L = 1

n

(
− µ

2a
+ 3µ

2a

)
= µ

an
= µ

a
√

µa−3/2
= √

aµ.

The new Hamiltonian is (since the old Hamiltonian is zero)

K = ∂ F

∂t
= −3µ

2a
+ µ

a
= − µ

2a
= − µ2

2L2
.

The orbit of the planet is now described by the following quantities:

l = n(t − τ ) = M,

g = ω,

h = �,

L = √
aµ,

G =
√

aµ(1 − e2),

H =
√

aµ(1 − e2) cos ι,

K = − µ2

2L2
.

(4.114)

These are called Delaunay’s elements. They are an example of the more general
action-angle variables.

4.13 Hamiltonian formulation of the three-body problem

For a three-body problem it is usually convenient to use the Jacobi form and the
Delaunay elements to describe both the inner orbit (subscript i , see Fig. 4.3) and
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ne1

2

3
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R3

Figure 4.3 Internal (i) and external (e) systems.

the external orbit (subscript e). Using the osculating elements we may write

li = Mi Li = ni a
2
i

gi = ωi Gi = ni a
2
i

√(
1 − e2

i

)
hi = �i Hi = ni a

2
i

√(
1 − e2

i

)
cos ιi

le = Me Le = nea2
e

ge = ωe Ge = nea2
e

√(
1 − e2

e

)
he = �e He = nea2

e

√(
1 − e2

e

)
cos ιe.

(4.115)

The osculating elements are calculated from the initial values as follows:

ai =
(

2

r
− v2

Gm B

)−1

,

ae =
(

2

R3
− V 2

3

G M

)−1

,

ni =
√

Gm B/a3
i ,

ne =
√

G M/a3
e ,

ei =
√

1 + (r · ṙ )2 − r2v2

Gm Bai
,

ee =
√

1 + (R3 · Ṙ3)2 − R2
3 V 2

3

G Mae
,

(4.116)

etc. The first two values are found by solving the semi-major axis from the formula
(3.32) for the orbital velocity. The mean motions ni and ne are given by (3.45).
Finally, the eccentricities follow from the relation k =

√
aµ(1 − e2) = r

√
v2 − ṙ2.
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The Hamiltonian is

H = − µ2

2L2
i

− m2

2L2
e

+ Gm3

(
m B

R3
− m1

r13
− m2

r23

)
, (4.117)

and the Hamiltonian equations of motion are

L̇ i = −∂ H

∂li
L̇e = −∂ H

∂le

Ġi = −∂ H

∂gi
Ġe = −∂ H

∂ge

Ḣi = −∂ H

∂hi
Ḣe = −∂ H

∂he

l̇i = ∂ H

∂Li
l̇e = ∂ H

∂Le

ġi = ∂ H

∂Gi
ġe = ∂ H

∂Ge

ḣi = ∂ H

∂ Hi
ḣe = ∂ H

∂ He
.

(4.118)

In order to be able to solve these equations, we have to express quantities R3, r13

and r23 in the Hamiltonian in terms of the Delaunay elements. This is not an easy
task, and makes the use of the Hamiltonian method more difficult than it appears
at first.

The three components of the total angular momentum can be written with the
aid of Delaunay elements as follows:

L = (Ki sin hi + Ke sin he, −Ki cos hi − Ke cos he, Hi + He) (4.119)

where

Ki =
√

G2
i − H 2

i , Ke =
√

G2
e − H 2

e (4.120)

(Problem 4.6).

4.14 Elimination of nodes

The Hamiltonian equations of motion may be simplified by choosing an optimal
coordinate system. We take the invariable plane (perpendicular to the total angular
momentum L) as the reference plane (Figs. 4.4 and 4.5). Then the components of
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Figure 4.4 The invariable plane is perpendicular to the angular momentum vector
L. The line of nodes is perpendicular to the plane spanned by the vectors ke
and ki .

invariable plane

plane of the external system
plane of the internal system

he

hi

L

Figure 4.5 Elimination of nodes. In the system defined by the invariable plane the
longitudes of the ascending nodes he and hi differ by π .

L are (0, 0, L), or

Ki = Ke G2
i − H 2

i = G2
e − H 2

e ,

hi + π = he Hi + He = L .
(4.121)

From here we solve for Hi and He:

Hi = (L2 + G2
i − G2

e

)
/2L ,

He = (L2 − G2
i + G2

e

)
/2L .

(4.122)

The quantities Hi and He are constants of motion which we infer as follows.
The energy of the system, i.e. its Hamiltonian, does not depend on he since he

only specifies the orientation of the three-body system in space which is of no
consequence as regard to the total energy. The difference he − hi would generally
matter, but in our special coordinate system this difference is equal to π (Fig. 4.5).
Consequently the Hamiltonian cannot depend on hi either. Since the Hamiltonian
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does not depend explicitly on either he or hi , the conjugate momenta He and Hi

must be constants of motion.
This is an important result. For the two binaries it tells us that√

m Bai
(
1 − e2

i

)
cos ιi = constant,√

Mae
(
1 − e2

e

)
cos ιe = constant.

(4.123)

The values of the constants are determined at some initial moment of time, and
Eq. (4.123) governs the subsequent evolution of the system.

This choice of a coordinate system is called ‘elimination of nodes’. From the set
of equations (4.118) this choice eliminates those which relate hi to Hi and he to He.

4.15 Elimination of mean anomalies

Often we are interested in the evolution of the three-body system over a long
period of time. In particular, we would like to know whether there are, and under
what conditions, long term trends of evolution, so-called secular evolution. In a
hierarchical triple, the long term corresponds to calculating the trends over many
orbital periods of both the inner and the outer binaries. In the lowest order, when
the size of the inner binary orbit is much smaller than the outer orbit, the two semi-
major axes remain constant, i.e. they do not show secular evolution (see Chapter 9
for a more thorough discussion). Then one may average the Hamiltonian over both
orbital cycles, and the averaged Hamiltonian can be used in place of the original
Hamiltonian (Marchal 1990). Now the new Hamiltonian does not depend explicitly
on the mean anomalies li and le, and the corresponding canonical momenta Li and
Le are constants, as they should be since this means that the semi-major axes of the
inner and the outer orbits remain constant.

It is rather obvious that the semi-major axes can remain constant only if the
system is sufficiently hierarchical, i.e. ae/ai � 1. In other words, the two binary
orbits should not perturb each other too much. We need methods of perturbation
theory to look for a suitable Hamiltonian to carry out the elimination of mean
anomalies.

Problems

Problem 4.1 Show that the equation

∂ f

∂x
− d

dx

(
f − y′ ∂ f

∂ y′

)
= 0

is equivalent to the Lagrange equation (4.13).
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Problem 4.2 A body with a mass M moves along the x axis in a potential −kx
(k > 0). Write its Lagrangian and Hamiltonian equations of motion.

Problem 4.3 The rectangular coordinates of a body are x , y and z and the cor-
responding momenta px , py and pz . Apply a transformation with a generating
function

f = (x − at)PX + (y − bt)PY + (z − ct)PZ ,

where a, b and c are constants and t is time. Express the new coordinates X , Y and
Z and the momenta PX , PY and PZ as functions of the old ones. What is the new
Hamiltonian if the original one is

H = p2
x + p2

y + p2
z

2m
?

What is the physical interpretation of the transformation?

Problem 4.4 The rectangular coordinates of a body are x and y and the momenta
px and py . The Hamiltonian is

H = p2
x + p2

y

2m
− k√

x2 + y2
,

where k > 0 is a constant. Find a generating function for transformation to polar
coordinates, the new momenta and the new Hamiltonian.

Problem 4.5 Delaunay’s elements of an object on 1 April 1983 were l = 30◦,
g = 10◦, h = 100◦, L = 0.03 AU2/d, G = 0.029 AU2/d, H = 0.025 AU2/d. Find
its ordinary orbital elements.

Problem 4.6 Verify Eq. (4.119).
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The planar restricted circular three-body problem
and other special cases

After the two-body problem, the next more complicated system consists of three
bodies. Let us call these bodies the Sun, planet and asteroid. Some further assump-
tions are made to keep the system as simple as possible. The word restricted means
here that the mass of the asteroid is so small that it does not significantly affect the
motion of the primaries (the Sun and the planet). The primaries move in circular
orbits, and the asteroid is assumed to move in the same plane as the primaries.
The perturbations due to the third body can be neglected and the positions of the
primaries can be calculated analytically for all times. The problem is now to find
the trajectory of the massless body.

The assumption about the mass of the asteroid is a little problematic. If the
primaries affect the motion of the asteroid, it must, of course, affect their motions
according to Newton’s third law. The accuracy required determines whether the
third body can actually be considered massless. Discarding Newton’s third law has
a side effect: total energy is no longer conserved. However, the energy conservation
law can be replaced by another similar law.

5.1 Coordinate frames

When studying the restricted circular three body problem, the units are usu-
ally chosen in such a way that the properties of the system depend on a single
parameter.

� The total mass of the primaries is taken as the unit of mass. The mass of the planet is
denoted by µ, whence the mass of the Sun is 1 − µ. (This must not be confused with the
µ appearing in the two-body problem.)

� The distance between the primaries is the unit of distance. The distances of the planet and
the Sun from the centre of mass are then 1 − µ and µ, respectively.

� The unit of time is chosen so that the mean motion of the primaries is n = 1. Hence the
mean anomaly equals the time.

115
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ξ
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Figure 5.1 The inertial sidereal ξη and rotating synodic ξη coordinate frames of
the three-body problem.

From these it follows that the gravitational constant is unity. The only remaining
parameter is µ.

To describe the orbits one needs, first of all, a fixed sidereal frame (ξ, η), the
origin of which is at the centre of mass of the system (Fig. 5.1). In this frame, the
positions of the primaries as functions of time are

Sun:

⎧⎨
⎩

ξ = −µ cos t

η = −µ sin t

planet:

⎧⎨
⎩

ξ = (1 − µ) cos t

η = (1 − µ) sin t.

(5.1)

Things look simpler in a frame where the primaries are stationary. Therefore we
will also use a synodic ξη frame, the origin of which is also at the centre of mass,
but with the positive ξ axis pointing in the direction of the planet.

The synodic frame rotates with an angular velocity of n = 1. In this frame the
coordinates of the Sun are (−µ, 0) and those of the planet are (1 − µ, 0). Denote
the position of the asteroid by (ξ, η) and the distances of the asteroid from the Sun
and the planet by ρ1 and ρ2, respectively.

5.2 Equations of motion

The Newtonian equations of motion in the rotating frame are now required. Be-
ginning with the Hamiltonian equations in the inertial sidereal frame, a canon-
ical transformation is employed to get the equations in the rotating (synodic)
frame.
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Denoting the conjugate momenta corresponding to the ξ - and η-coordinates by
pξ and pη, the Hamiltonian of the asteroid is

H = 1

2

(
p2

ξ + p2
η

)
− 1 − µ

ρ1
− µ

ρ2
, (5.2)

where

ρ1 =
(

(ξ + µ cos t)2 + (η + µ sin t)2
)1/2

,

ρ2 =
(

(ξ − (1 − µ) cos t)2 + (η − (1 − µ) sin t)2
)1/2

.

(5.3)

The ξ, η and ξ, η coordinates are related by the equations

ξ = ξ cos t − η sin t,

η = ξ sin t + η cos t.
(5.4)

Transformation to the rotating ξη frame can be accomplished using a generating
function

F = F(pξ , pη, ξ, η)

= −(ξ cos t − η sin t)pξ − (ξ sin t + η cos t)pη.
(5.5)

It is easy to see that this gives just the equations (5.4) for the coordinates:

ξ = − ∂ F

∂ pξ

= ξ cos t − η sin t,

η = − ∂ F

∂ pη

= ξ sin t + η cos t.

The new momenta are

Pξ = −∂ F

∂ξ
= pξ cos t + pη sin t,

Pη = −∂ F

∂η
= −pξ sin t + pη cos t.

(5.6)

The transformation is just a rotation, and thus the sum of the squares of the mo-
menta remains unchanged, which is of course easy to check using the equations
(5.6):

p2
ξ + p2

η = P2
ξ + P2

η .
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The new Hamiltonian is

H = H + ∂ F

∂t
= 1

2

(
P2

ξ + P2
η

)− 1 − µ

ρ1
− µ

ρ2

+ ξpξ sin t + ηpξ cos t − ξpη cos t + ηpη sin t.

The last four terms can be written as

ξ (pξ sin t − pη cos t) + η(pξ cos t + pη sin t)

= ξ (−Pη) + ηPξ .

Thus we have

H = 1

2

(
P2

ξ + P2
η

)+ Pξη − Pηξ − 1 − µ

ρ1
− µ

ρ2
, (5.7)

where

ρ1
2 = (ξ + µ)2 + η2,

ρ2
2 = (ξ − (1 − µ))2 + η2.

(5.8)

The equations of motion of the asteroid in the synodic frame are now

ξ̇ = ∂ H

∂ Pξ

= Pξ + η,

η̇ = ∂ H

∂ Pη

= Pη − ξ,

Ṗξ = −∂ H

∂ξ
= ∂

∂ξ

(
1 − µ

ρ1
+ µ

ρ2

)
+ Pη,

Ṗη = −∂ H

∂η
= ∂

∂η

(
1 − µ

ρ1
+ µ

ρ2

)
− Pξ .

(5.9)

The Newtonian equations of motion are obtained by eliminating the momenta
from (5.9). The derivatives of the momenta are found from the first two equations:

Ṗξ = ξ̈ − η̇,

Ṗη = η̈ + ξ̇ .

Substitution into the two last equations (5.9) gives

ξ̈ − η̇ = η̇ + ξ + ∂

∂ξ

(
1 − µ

ρ1
+ µ

ρ2

)
,

η̈ + ξ̇ = −ξ̇ + η + ∂

∂η

(
1 − µ

ρ1
+ µ

ρ2

)
.
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Thus, the equations of motion are

ξ̈ − 2η̇ = ∂�

∂ξ
,

η̈ + 2ξ̇ = ∂�

∂η
,

(5.10)

where � can be considered an effective potential:

� = 1

2

(
ξ 2 + η2

)+ 1 − µ

ρ1
+ µ

ρ2
. (5.11)

The terms −2η̇ and 2ξ̇ in (5.10) are the Coriolis terms, while the term 1
2 (ξ 2 + η2)

in (5.11) represents the centrifugal potential. Sometimes a constant term is added
to �, since it simplifies some results, but it is not needed here.

Example 5.1 We will see the appearance of the Coriolis terms and the centrifugal
potential more clearly if we use the tools of Section 2.14 and rederive Eqs. (5.10)
and (5.11) in vector form. Let the angular velocity of the comoving frame relative
to the inertial frame be ω = êζ , and the position vector of the third body in the
comoving frame r . Then Eq. (2.76) leads to

r̈ = −∇U − ω × (ω × r ) − 2ω × ṙ ,

where

U = −1 − µ

ρ1
− µ

ρ2
,

and the derivatives are taken in the rotating (comoving) frame. This can be written

r̈ + 2ω × ṙ = ∇�

if

� = 1

2
(ω × r )2 − U.

In checking this result it is useful to remember the vector expression
∇(ω × r )2 = −2ω × (ω × r ). Here we have the generalisation of Eqs. (5.10) and
(5.11), with the Coriolis and centrifugal terms clearly shown.

5.3 Jacobian integral

The constants derived earlier for the two-body problem do not apply to the three-
body problem. One of the constants, corresponding to the energy integral h, can be
found relatively easily. We multiply the first equation of motion by ξ̇ , the second
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by η̇, and add:

ξ̇ ξ̈ − 2ξ̇ η̇ = ξ̇
∂�

∂ξ
,

η̇η̈ + 2η̇ξ̇ = η̇
∂�

∂η

⇒
ξ̇ ξ̈ + η̇η̈ = ∂�

∂ξ
ξ̇ + ∂�

∂η
η̇.

Since � does not depend explicitly on time, the expression on the right is the total
time derivative of �. The left hand side can be expressed in terms of the derivatives
of the velocities:

d

dt

(
ξ̇ 2 + η̇2

) = 2
d�

dt
.

Integration gives

ξ̇ 2 + η̇2 = 2� − C

or

C = 2�(ξ, η) − v2, (5.12)

where v is the velocity of the asteroid relative to the primaries, and C is a constant,
called the Jacobian integral.

Because the square of the velocity cannot be negative, the motion of the asteroid
is restricted to the region where v2 = 2� − C ≥ 0 or

� ≥ C/2. (5.13)

When the position and velocity of the asteroid are known for some initial moment,
the Jacobian integral can be evaluated. Since � is a function of position only,
condition (5.13) tells immediately whether the asteroid can ever reach a given point
(ξ, η). This condition does not say anything about the shape of the orbit, it only
determines the region where the asteroid could move.

The condition (5.13) shows that the larger the value of C , the smaller the al-
lowed region is. In Fig. 5.2 the shaded areas are forbidden regions for the asteroid
(µ = 0.3).

When C is large, the allowed region consists of three separate areas. The asteroid
can orbit either of the primaries, in which case it can never wander far from that
primary, or it can move on a very wide orbit around both primaries. It can never
move from one allowed region to another if the regions are not connected.
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L4

L5

C=1.42C=1.5

L3

C=1.646

L2

C=1.777

L1

C=1.95C=2.5

µ=0.3

Figure 5.2 Forbidden regions (shaded areas) for different values of the Jacobian
integral C in the case µ = 0.3.

When C becomes smaller, a connection opens between the two inner regions,
first at the point L1. A small body orbiting the Sun can then be captured to an orbit
around the planet, or the planet can lose a satellite to a solar orbit. However, the
small body can never escape from the system. Its orbit is then said to be stable in
Hill’s sense (Hill 1878). There is no stability of this kind in the general three-body
problem where the third body can always escape from the vicinity of the other two.
But even in the general three-body problem there are some special motions for
which the third body may remain in the vicinity of the other two forever.
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When the value of C is further reduced, the outer and inner regions become
connected and escape becomes possible. The first connection opens at L2 and
when C becomes even smaller, another one appears on the opposite side at L3. The
points L1, L2 and L3 are on the same straight line with the primaries; they are,
however, numbered differently by different authors.

The forbidden region consists now of two separate areas. When C is decreased
these areas shrink to the points L4 and L5 before disappearing completely.

Example 5.2 We may rederive the Jacobian integral in a different way by writing
in vector form (see Example 5.1)

∂

∂t

(
1

2
ṙ2

)
= ṙ · r̈ = ṙ · ∇� − 2ṙ · (ω × ṙ ) = ∂�

∂t
,

since ṙ · (ω × ṙ ) = 0 and ṙ · ∇� = ∂�/∂t . Consequently

� − 1

2
ṙ2 = constant = 1

2
C.

The significance of the Jacobian integral C is further clarified by writing the
specific angular momentum (angular momentum per unit mass)

k = r × ṙ + r × (ω × r )

and the energy per unit mass

h = 1

2
(ṙ2 + 2ṙ · (ω × r ) + (ω × r )2) − U

in the comoving frame for the third body (Eq. (2.74)). With the help of

ω · k = ω · (r × ṙ ) + ω · r × (ω × r ) = ṙ · (ω × r ) + (ω × r )2

we get

h − ω · k = 1

2
ṙ2 + ṙ · (ω × r ) + 1

2
(ω × r )2 + U

− ṙ · (ω × r ) − (ω × r )2

= 1

2
ṙ2 − � = −1

2
C.

Therefore, even though h and k are not individually conserved in the time-varying
potential field of the two primaries, the combination

h − ω · k = h − nkζ = −1

2
C

is conserved. Here kζ is the component of the angular momentum perpendicular to
the orbital plane of the primaries, i.e. in the ζ -direction. From the above it follows
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that

dh = n dkζ .

Thus the changes of the ζ -component of the specific angular momentum are tied
together with the changes of the specific energy of the third body.

In terms of orbital elements, h = −1/2a, kζ =
√

a(1 − e2) cos ι, and n = 1.
Then C is called the Tisserand parameter T :

T = C = 1

a
+ 2
√

a(1 − e2) cos ι. (5.14)

5.4 Lagrangian points

The function � has five interesting special points L1, . . . , L5. These are called the
Lagrangian points. We now find their positions.

Inspecting the equations of motion (5.10) we can see that they have a trivial
solution

ξ̇ = η̇ = 0 (5.15)

if the derivatives of � vanish. Thus the third body can remain at rest at such a point.
Since ∂�/∂ξ = ∂�/∂η = 0, these points are also extrema or saddle points of �.
In the forbidden regions of Fig. 5.2 the values of � are smaller than in the allowed
regions, and thus the points L1, L2 and L3 are obviously saddle points and L4 and
L5 are minima. Thus the points L1, . . . , L5 are indeed determined by the condition

∂�

∂ξ
= ∂�

∂η
= 0. (5.16)

Calculating these derivatives we get a pair of equations for the Lagrangian points:

∂�

∂ξ
= ξ − (1 − µ)(ξ + µ)

ρ1
3

− µ(ξ − (1 − µ))

ρ2
3

= 0, (5.17)

∂�

∂η
= η − (1 − µ)η

ρ1
3

− µη

ρ2
3

= 0. (5.18)

The latter has a trivial solution η = 0. Substituting this into the first equation pro-
duces:

ξ − (1 − µ)(ξ + µ)

[(ξ + µ)2]3/2
− µ(ξ − (1 − µ))

[(ξ − (1 − µ))2]3/2
= 0. (5.19)

Simplifying this requires care with the signs of the square roots. To the right of both
primaries, ξ + µ and ξ − (1 − µ) are positive. Between the primaries the latter is
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Figure 5.3 ξ -coordinates of the Lagrangian points L1, L2 and L3 for different
values of µ.

negative, and the negative branch of the square root is taken. To the left of the
primaries, both values are negative. The following three equations therefore arise:

ξ − 1 − µ

(ξ + µ)2
− µ

(ξ − (1 − µ))2
= 0, 1 − µ < ξ,

ξ − 1 − µ

(ξ + µ)2
+ µ

(ξ − (1 − µ))2
= 0, −µ < ξ < 1 − µ, (5.20)

ξ + 1 − µ

(ξ + µ)2
+ µ

(ξ − (1 − µ))2
= 0, ξ < −µ.

In principle these are three equations of the fifth degree, but each of them has
only one root in the range where it is valid. The equations can easily be solved by
numerical methods. Figure 5.3 shows the ξ -coordinates of the points L1, L2 and
L3 for different values of µ.

When η �= 0 we have from (5.18)

1 − 1 − µ

ρ1
3

− µ

ρ2
3

= 0.

Multiply this by ξ + µ and subtract from (5.17). Then

µ

ρ2
3

− µ = 0.

Thus ρ2 = 1.
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Similarly, multiply (5.18) by ξ − (1 − µ) to obtain

ξ − (1 − µ) − (1 − µ)(ξ − (1 − µ))

ρ1
3

− µ(ξ − (1 − µ))

ρ2
3

= 0.

When this is subtracted from (5.17), the result is

1 − µ − 1 − µ

ρ1
3

= 0.

It follows that ρ1 = 1. Since the distance between the primaries is unity, these two
points with the primaries form two equilateral triangles. Their coordinates satisfy

(ξ − (1 − µ))2 + η2 = 1,

(ξ + µ)2 + η2 = 1.
(5.21)

From the geometry of the configuration it is obvious that the solution is

ξ = 1

2
− µ,

η = ±
√

3/2.

(5.22)

5.5 Stability of the Lagrangian points

Perturbing a body near a Lagrangian point is a problem well studied in the classical
literature (e.g. Hagihara 1976). Here we follow the analysis given in Szebehely
(1967).

Let (ξ0, η0) be any of the Lagrangian points and (x, y) the position of the body
relative to this point:

x = ξ − ξ0,

y = η − η0.
(5.23)

Concentrating on a small neighbourhood of the Lagrangian point permits the deriva-
tives of � to be replaced by their linearised approximations. At the Lagrangian
points

∂�

∂ξ
= ∂�

∂η
= 0. (5.24)

Then the following approximations can be used in their immediate vicinity:

∂�

∂ξ
≈ x

∂2�

∂ξ 2
+ y

∂2�

∂ξ∂η
,

∂�

∂η
≈ x

∂2�

∂ξ∂η
+ y

∂2�

∂η2
.

(5.25)
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The linearised equations of motion are then

ẍ − 2ẏ = x
∂2�

∂ξ 2
+ y

∂2�

∂ξ∂η
,

ÿ + 2ẋ = x
∂2�

∂ξ∂η
+ y

∂2�

∂η2
.

(5.26)

Consider first the points L1, L2 and L3, where η = 0. At these points, the deriva-
tives of � are

∂2�

∂ξ 2
= 1 + 2α,

∂2�

∂η2
= 1 − α,

∂2�

∂ξ∂η
= 0,

(5.27)

where

α = 1 − µ

ρ1
3

+ µ

ρ2
3
. (5.28)

The equations of motion become now

ẍ − 2ẏ = x(1 + 2α),

ÿ + 2ẋ = y(1 − α).
(5.29)

It is useful to study the trial trajectory

x = A eωt ,

y = B eωt ,
(5.30)

where A, B and ω are constants. If a solution exists for which the real part of ω

is non-zero, the coordinates of the body can grow without limit, and the orbit is
unstable. But if ω must be purely imaginary, the motion is just oscillation that must
remain bounded.

Substitution of the trial orbit into the equations of motion gives

Aω2 eωt − 2Bω eωt = A eωt (1 + 2α),

Bω2 eωt + 2Aω eωt = B eωt (1 − α)

or

Aω2 − 2Bω = A(1 + 2α),

Bω2 + 2Aω = B(1 − α).
(5.31)
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Eliminating A and B, and after some algebra, the result is:

ω4 + ω2(2 − α) + (1 + 2α)(1 − α) = 0. (5.32)

If ω is to be purely imaginary, there must be two negative solutions for ω2. The
product of these roots must then be positive, so that

(1 + 2α)(1 − α) > 0. (5.33)

Since the first factor is always positive, then

α < 1. (5.34)

The Lagrangian points must satisfy Eq. (5.17):

∂�

∂ξ
= ξ − (1 − µ)(ξ + µ)

ρ1
3

− µ(ξ − (1 − µ))

ρ2
3

= 0.

Rearranging the terms,

ξ − ξ

[
1 − µ

ρ1
3

+ µ

ρ2
3

]
− µ(1 − µ)

ρ1
3

+ µ(1 − µ)

ρ2
3

= 0

or

ξ (1 − α) − µ(1 − µ)

[
1

ρ1
3

− 1

ρ2
3

]
= 0,

from which

1 − α = µ(1 − µ)

ξ

[
1

ρ1
3

− 1

ρ2
3

]
. (5.35)

It is easy to see that for all Lagrangian points on the ξ axis, the bracketed expression
and ξ have opposite signs. Thus the right hand side of the equation is always
negative, and

α > 1. (5.36)

This conflicts with the previous requirement that α < 1. Therefore it is impossible
to find purely imaginary solutions for ω, and the points L1, L2 and L3 are unstable. If
a body in any of these points is disturbed, it will move away. This is quite reasonable
physically, for these points are saddle points of �.

The coordinates of the point L4 are ξ = 1
2 (1 − 2µ) and η = √

3/2, so that the
linearised equations of motion are

ẍ − 2ẏ = 3

4
x + 3

√
3

4
(1 − 2µ)y,

ÿ + 2ẋ = 9

4
y + 3

√
3

4
(1 − 2µ)x .

(5.37)
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Substitution of the trial solution (5.30) gives

ω4 + ω2 + 27

4
µ(1 − µ) = 0. (5.38)

Because

ω2
1ω

2
2 = 27

4
µ(1 − µ) > 0,

the possible real roots have the same sign. Since also

ω2
1 + ω2

2 = −1 < 0,

both roots ω2
i must be negative. We require that Eq. (5.38) has real roots and thus

ω is imaginary:

1 − 4
27

4
µ(1 − µ) > 0

or

27µ2 − 27µ + 1 > 0. (5.39)

This is satisfied when

µ <
1

2
−
√

23

108
≈ 0.0385. (5.40)

Thus stable orbits around L4 and L5 are possible provided that µ < 0.0385. The
Trojan asteroids around the points L4 and L5 of the Sun–Jupiter system are a good
example of this. They orbit the Sun in the same orbit with Jupiter, but 60◦ ahead
of or behind Jupiter. Actually the asteroids librate around the Lagrangian points,
and can move quite far away without escaping. Other planets may have their own
Trojans around their L4 or L5 points. The first one to be discovered outside the
Jupiter system was the Mars Trojan minor planet (5261) Eureka (Mikkola et al.
1994).

The above analysis applies only to orbits which start close to the Lagrangian
points L4 or L5. By numerical orbit integration it is possible to investigate what
happens when the displacement is relatively large. Then the small body may librate
around L4 or L5 on a wide arc centred at the primary. Such orbits are called tadpole
orbits (Fig. 5.4). The tadpoles of L4 and L5 may also meet in which case the orbit is
called a horseshoe orbit. An example of the latter is asteroid (3753) Cruithne, which
librates in an inclined horseshoe orbit in the Sun–Earth system and occasionally
even becomes a quasi-satellite of the Earth (Wiegert et al. 1997, Brasser et al.
2004). Venus has a similar quasi-satellite (Fig. 5.5; Mikkola et al. 2004). Classical
two-dimensional horseshoe orbits are found in ‘Janus’ moons of Saturn.
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Figure 5.4 Tadpole orbits and horseshoe orbits. The orbits of three asteroids rela-
tive to the Sun (⊕), the Earth ( ), and the point L4 ( ) are drawn. They correspond
to slightly different values of the Jacobi constant C . The orbit closest to L4 is a
tadpole orbit, the one going close to the Earth is a horseshoe orbit. Between them
is a limiting case where two tadpoles meet to make a horseshoe.
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Figure 5.5 The path of asteroid 2002 VE68 which comes close to Venus and from
time to time becomes a quasi-satellite of Venus.
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ξc

η

(ξc, η)

ξ = ξc −1
1

Figure 5.6 A satellite is close to a planet. The coordinates of the planet are (1, 0)
and those of the planet (ξ, η). A transformation to coordinates centred at the planet
is achieved by replacing ξ − 1 by a new coordinate (also called ξ in the text).

5.6 Satellite orbits

We turn now to study the stability of satellite orbits around a planet. These may
be, for example, small asteroidal satellites. We neglect effects such as tides or
perturbations by other planets, take the planetary orbit to be circular and the satellite
orbit to be coplanar with the planetary orbit. Then the theory of the restricted three-
body problem may be applied. Let us begin by writing (5.10) as

ξ̈ − 2η̇ = ξ − (1 − µ)
ξ + µ

ρ1
3

− µ
ξ − (1 − µ)

ρ2
3

,

η̈ + 2ξ̇ = η −
[

1 − µ

ρ1
3

+ µ

ρ2
3

]
η.

(5.41)

To simplify matters, we take the planet/Sun mass ratio µ to be small in which case
1 − µ ≈ 1. It is useful to consider the orbit of the satellite relative to the planet, and
therefore adopt the coordinate system centred on the planet via the transformation
ξ → 1 + ξ (Fig. 5.6). Then

ξ̈ − 2η̇ − ξ = 1 − 1 + ξ

ρ1
3

− µ
ξ

ρ2
3
,

η̈ + 2ξ̇ − η = − η

ρ1
3

− µ
η

ρ2
3
,

ρ1
2 = (1 + ξ )2 + η2 ≈ 1 + 2ξ.

In this approximation, terms of order ξ 2 and η2 have been neglected, and therefore

ρ−3
1 ≈ (1 + 2ξ )−3/2 ≈ 1 − 3ξ.
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ξ

η

η•

η•C.M.

Figure 5.7 Direct circular motion of the satellite around the planet. In retrograde
motion the direction of motion is the opposite.

Thus

ξ̈ − 2η̇ = 3ξ − µ
ξ

ρ3
2

,

η̈ + 2ξ̇ = µ
η

ρ3
2

.

(5.42)

These are called Hill’s equations.
It is obvious that the satellite orbit cannot be stable if the Sun causes a greater

acceleration on the satellite than the planet. The limiting acceleration, when the
satellite crosses the ξ axis, ξ̈ = 0, defines a boundary. Consider this boundary in
three different situations.

If the satellite motion is radial along the ξ axis (i.e. η̇ = 0), at the stationary point
ξ̇ = ξ̈ = 0 Eq. (5.42) gives 3ξ = µξ/ρ3

2 , or

ρ2 = (ρ2)H =
(µ

3

)1/3
. (5.43)

A sphere of this radius around the planet is called the Hill sphere.
In another case the satellite is moving in a circular orbit around the planet either

in direct (+) or retrograde (−) sense (Fig. 5.7). For ξ̈ = 0 at η = 0, (5.42) then
gives

ξ̈ = 3ξ − ω2ξ ± 2ωξ = 0 (5.44)

where ω is the angular speed of the satellite around the planet (ω2 = µ/ρ3
2 ; η̇ =

±ωξ ). For direct orbits, this is equivalent to (ω − 3)(ω + 1) = 0, i.e. ω = 3; for
retrograde orbits, (ω + 3)(ω − 1) = 0, i.e. ω = 1. The corresponding distances are
(Innanen 1979, 1980)

(ρ2)d =
(µ

9

)1/3
, (5.45)

(ρ2)r = µ1/3.
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Figure 5.8 Hill sphere of radius (ρ2)H limits the region where radial satellite
motion is stable. Direct circular orbits are stable within (ρ2)d and retrograde orbits
within (ρ2)r from the primary.

Since the perturbing (tidal) force is strongest when the satellite crosses the ξ axis,
the spheres of radii (ρ2)d and (ρ2)r outline the regions of stability for satellites in
direct and retrograde motions, respectively. Note that the Hill sphere is intermediate
between these two spheres. The radius of the retrograde sphere of stability is about
twice the corresponding radius for direct circular orbits (Fig. 5.8).

The orbits which approach the spheres of stability are modified and are not
circular any more. Therefore the limits derived here cannot be taken as absolute
boundaries. However, their relation to the zero velocity curves may be studied by
looking at the Jacobi constant which in the limit of small ξ , ρ1 ≈ 1, 1 − µ ≈ 1 is

C ≈ 3 + 2µ/ρ2 − v2. (5.46)

The velocities at the limits of stability for direct and retrograde circular orbits are
v2

d = µ/(ρ2)d and v2
r = µ/(ρ2)r , respectively, and the corresponding values for the

Jacobi constants are

Cd ≈ 3 + µ/(ρ2)d
(5.47)

Cr ≈ 3 + µ/(ρ2)r .

The Jacobi constant corresponding to the Hill sphere is

CH ≈ 3 + 2µ/(ρ2)H . (5.48)

Figure 5.9 illustrates the zero velocity curves corresponding to these values of
the Jacobi constant. Note that the zero velocity surface corresponding to CH is not
quite a sphere but it has an elongation connecting to the Lagrangian point L1 where
it meets the corresponding surface for the primary (the Sun). It is through this point
that satellites in direct circular orbits may escape from the direct influence of the
planet, or the Sun. The zero velocity surface corresponding to Cr envelopes both
the Sun and the planet and their Hill spheres. This allows asteroids and other bodies
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M m

both direct and retrograde orbits

mostly retrograde orbits

only retrograde orbits

Figure 5.9 Zero velocity curves for three values of Jacobi constant. The primary
is labelled M and the secondary (planet) by m. The different regions of stability
for satellite orbits around the secondary are indicated.

circling the Sun to become retrograde satellites of planets. Such orbits are only
quasi-stable since the reverse process is equally possible. Inside the zero velocity
surface corresponding to Cd , satellites of all inclinations are stable. The retrograde
satellites of Jupiter, Saturn and Uranus are all well inside the above theoretical
limit. The limit derived for retrograde orbits is not to be taken too strictly, since
retrograde satellites can exist even at much greater distances (Hénon 1970, Mikkola
and Innanen 1997).

Equation (5.46) leads to a useful expression for the speed of approach v to a
planet at the distance (ρ2)H of the Hill sphere. Substitution of ρ2 = (µ/3)1/3 gives

T = C ≈ 3 − v2 + 2 × 31/3µ2/3 ≈ 3 − v2, (5.49)

since µ is a small quantity for a planet.

5.7 The Lagrangian equilateral triangle

Lagrange studied a special case of a three-body problem where the three bodies are
placed at the corners of an equilateral triangle. He found a solution where the three
bodies remain at constant distances from each other while they revolve around their
common centre of mass. Later Euler found a solution to the same problem where
the lengths of the sides can vary, keeping, however, their ratio constant. In both
cases the accelerations of the bodies are toward the centre of mass of the system,
and the three bodies rotate around this point in synchronism (Fig. 5.10).

We may use the equations of motion in the Lagrangian form to solve the problem.
Since r12 = r23 = r31, W = 0 and

r̈12 = −G Mr12/r3
12. (5.50)



134 The planar restricted circular three-body problem
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Figure 5.10 Lagrangian equilateral triangle and possible orbits.

1
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Figure 5.11 The positions of the three bodies in the centre-of-mass system.

This is the equation of motion of the two-body problem. Therefore each one of
the three bodies describes an elliptical orbit around their common centre of mass
(Fig. 5.10).

To see this more clearly, let us write the equation of motion for body number 1
in the centre of mass system (R = 0 in Eq. (2.4), Fig. 5.11). Due to symmetry, the
equations of motion of the two other bodies have the same form. By the definition
of the centre of mass

m1r1 + m2r2 + m3r3 = 0,

which may also be written as

(m1 + m2 + m3)r1 + m2(r2 − r1) + m3(r3 − r1) = 0

or

Mr1 = m2r12 + m3r13.
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The square of this is

M2r2
1 = m2

2r2
12 + m2

3r2
13 + 2m2m3r12 · r13.

In an equilateral triangle the angle between the vectors r12 and r13 is 60◦; therefore

M2r2
1 = (m2

2 + m2
3 + m2m3

)
r2,

where r = r12 = r23 = r31.
The equation of motion, Eq. (2.29), becomes

r̈1 = −G

(
m2

r12

r3
12

+ m3
r13

r3
13

)
= −G M

r1

r3
,

and if we replace r by r1 using the equation above:

r̈1 + G M1
r1

r3
1

= 0, (5.51)

where we have defined

M1 =
(
m2

2 + m2
3 + m2m3

)3/2

M2
. (5.52)

This is the equation of the two-body motion (Eq. (3.2)) about the centre of mass
when µ = G M1 (Danby 1962, Roy 2005).

Let us consider the special case of an equal mass (m) Lagrangian equilateral
triangle of side length r , with circular orbits. There M1 = m/

√
3, r = √

3r1, orbital
speed v2 = µ/r1 = Gm/r , kinetic energy T = 3

2 mv2 = 3
2 Gm2/r , potential energy

V = −3Gm2/r , total energy E0 = − 3
2 Gm2/r , and the total angular momentum

relative to the centre of mass L0 = 3mr1v = √
3Gm3/2√r . In the last relation r

may be replaced by |E0|:
L0 = (3/

√
2)Gm5/2/|E0|1/2. (5.53)

By comparison with Eq. (2.67) we see that L0 is about 85% of Lmax, i.e. close to the
standard reference value for three-body systems. The zero eccentricity Lagrangian
equilateral triangle corresponds to the zero eccentricity two-body orbit, and its
angular momentum is maximal for its orbit size. This gives some justification for
the use of the standard reference value Lmax as the upper limit of the range of angular
momenta in bound strongly interacting three-body systems in the next chapter. In
Chapter 9 we will study systems with L0 > Lmax, but they are clearly unbound or
hierarchical.

The significance of a solution like this depends on its stability. If the initial
positions and velocities are varied very slightly, the varied orbit may remain close
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to the original one at all future times. Then the original solutions are considered
stable. If, on the other hand, the slightly varied orbit deviates more and more from
the original orbit as time increases, the solution is deemed unstable. In the case
of the Lagrangian equilateral triangle, it has been shown that the solution is stable
only if one of the bodies dominates the system. The heaviest body has to have more
than 95% of the total mass for stability. Figure 5.12 outlines the stable regions as a
function of eccentricity e of the orbit and the mass ratio R = m2/M where m2 is
the middle mass (neither smallest nor largest) and M is the total mass.

5.8 One-dimensional three-body problem

This is a problem where all three bodies are constrained to move on a line. When
bodies collide, they bounce back elastically; otherwise Newtonian gravity is as-
sumed to be the only force in the system (Schubart 1956, Hénon 1976b, 1977).
This problem is not of much practical significance, and its main value lies in illus-
trating the general features of three-body orbits which are encountered also in the
general three-body problem.

Without loss of generality we may choose the system of coordinates such that the
gravitational constant G = 1 (this is a common choice in numerical orbit calcula-
tions), all the masses are equal to one unit, and the total energy E = −1. One could
also consider the more general case of the three masses being unequal, but for the
present the equal mass case is as good as any other. For the starting configuration,
the three bodies are placed at equal distances R from each other. Then, after the
speed of one of the outer bodies, say ṙ1, is fixed, the speed of the other outer body,
say ṙ2, is uniquely determined by the known value of the total energy. Even though it
may appear that the requirement of the starting distances being equal, r1 = r2 = R,
is a special case, it has been shown not to be so (Mikkola and Hietarinta 1989, 1990,
1991). One may view it such that the equal distances become unequal as soon as
the system starts evolving (except when ṙ1 = −ṙ2, a special case). By considering
the later moments of time in the orbits with symmetric starting distances as new
starting configurations, a whole range of starting positions, both symmetric and
asymmetric, is covered.

For this reason, the one-dimensional problem can be fully evaluated by studying
all possible initial values in a two-dimensional space. One of the dimensions is
obviously R; for the second dimension it is useful to make a transformation to
another parameter � defined as follows (Hietarinta and Mikkola, 1993):

ṙ1 = 2
√

T0 cos(� − π/3),

ṙ2 = 2
√

T0 cos(� + π/3).
(5.54)



5.8 One-dimensional three-body problem 137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04

e

R

Stability regions A and B

A

B

Figure 5.12 Regions of stability (labelled A and B) in the eccentricity–mass ratio
plane for elliptic Lagrangian motions (Danby 1964).

Here T0 is the initial kinetic energy of the system. It is determined by the known
value of the total energy and the initial distance R. Therefore � is uniquely defined
as soon as ṙ1 is given, and can be used as the second parameter in place of ṙ1. Then the
initial value space is the (R,�) plane. Even though the one-dimensional three-body
problem may appear simple, the solutions require numerical orbit calculations.
Figure 5.13 illustrates the time evolution of the coordinate x of each body as a
function of time t . It shows the typical feature that the system is composed of a
tight binary and a third body which have a close encounter every now and then
until one encounter finally leads to an escape of one of the bodies. When this final
breakup has happened, the system parameters become stable. An example of such
parameters is the semi-major axis of the binary a. In Fig. 5.14 we plot the values
of a in the (R,�) plane.

Figure 5.14 shows that there are three different regions in the initial value space.
At the bottom of the figure there are three semicircular areas where the end result
varies continuously with the starting conditions. In these trajectories, there is only
one close three-body encounter before the system breaks up. These events would
usually be called ‘scattering’. At the top of the figure, in the middle, there is a
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Figure 5.13 The time evolution of the positions of three bodies in the x axis in the
one-dimensional three-body problem. Small loops represent binaries, large loops
ejections of the third body. In the end (at time ≈ 400 units) the third body escapes.

Figure 5.14 A grey scale representation of the semi-major axis a of the binary
which remains after an escape in the one-dimensional three-body problem. The
largest values of a are represented by white, the smallest ones by black. No
escapes happen in the fanlike region in the top middle, where this quantity is
not defined. The parameters R (vertical axis) and � (horizontal axis) describe the
initial conditions. The (R, �) plane represents all possible initial values.
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region where no escapes take place, i.e. these systems are stable. At the centre of
this region there is a stable periodic orbit (Schubart 1956); the stability of this orbit
is shown by the fact that the neighbouring orbits are similar to the central orbit. In
the remainder of the figure the outcome of the three-body evolution is extremely
sensitive to the initial conditions. We may call this region chaotic.

This classification of three-body orbits applies quite generally to the three-body
problem. However, one should note that in the present case the region of stable orbits
covers an unusually large fraction of the initial value space. There are other periodic
solutions in the general problem (e.g. the Lagrangian orbits of the previous section),
but they are so rare and difficult to find, that they can usually be neglected as potential
astrophysical orbits. But when they are found, they often have the interesting prop-
erty that in their vicinity there exists an infinite number of quasi-periodic solutions.
These orbits fill a set of positive measure in phase space (so-called Kolmogorov–
Arnold–Moser theorem, Kolmogorov 1954, Arnold et al. 1988). A thorough dis-
cussion of periodic orbits is found for example in Marchal (1990).

Problems

Problem 5.1 Derive equations of motion for the three-dimensional restricted
three-body problem. The primaries are still confined to the ξη plane, but the mass-
less body can be anywhere. What happens to the Jacobian integral?

Problem 5.2 Assume that the primaries are the Sun and Jupiter and the third body
is a comet observed near the Sun. Explain why the following approximations are
then valid:

ξ̇ 2 + η̇2 + ζ̇ 2 = v2 = 2

ρ1
− 1

a
,

ξ η̇ − ηξ̇ =
√

a(1 − e2) cos ι,

1 − µ

ρ1
= 1

ρ1
,

µ

ρ2
= 0.

(5.55)

Here a, e and ι are the ordinary orbital elements of the comet. Using these approx-
imations, show that the expression

1

a
+ 2
√

a(1 − e2) cos ι

is constant. This is known as Tisserand’s criterion for comets’ identity.
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Problem 5.3 Show that in the restricted three-body problem the velocity of the
third body is zero on the curve

C = (1 − µ)

(
ρ1

2 + 2

ρ1

)
+ µ

(
ρ2

2 + 2

ρ2

)
.

Using this, show that the minimum value of C is 3.

Problem 5.4 Show that the Lagrangian points L4 and L5 are minima of the
function �. Hint: suppose that the function f of two variables has an extremum at
(x, y) and its second derivatives exist at this point. The extremum is a minimum if

∂2 f

∂x2∂

∂2 f

∂ y2∂
−
(

∂2 f

∂x∂y

)2

> 0. (5.56)

Problem 5.5 It has been suggested that the gegenschein (a faint glow in the
direction opposite to the Sun) is caused by dust in the Lagrangian point L2. Find
the position of this point and show that it is not within the umbra of the Earth.

Problem 5.6 A binary star has two components of one solar mass orbiting in a
circular orbit with a radius of 10 AU. A spacecraft crosses the line joining the stars
at a distance of 1 AU from one of the stars with a velocity of 10 km/s. Find the
Jacobian integral of the spacecraft. Can it go across the Lagrangian point between
the stars? Sketch the region where the motion of the spacecraft is confined as long
as it does not use any propulsion.
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Three-body scattering

Three-body systems tend to be unstable. Often they are only short-lived stages in
the evolution of a dynamical system. Typically a body comes from a large distance,
meets a binary, and escapes again far away. The meeting could be a distant flyby
or a close encounter with one of the binary members. Both types of events are
important and will be studied in turn. Here we will study only the latter situation,
and limit ourselves to the case where the third body is of low mass in comparison
with the binary. The general scattering problem is left to Chapters 8 and 10. As in
the two-body problem, the transfer of the third body from one hyperbolic relative
orbit to another is called scattering.

6.1 Scattering of small fast bodies from a binary

The restricted circular three-body problem deals with the motion of a ‘massless’
body in the gravitational field of a zero eccentricity binary. What we will now
discuss is a similar problem, namely the motion of a low mass body in the binary
field. In our problem the low mass body arrives from a large distance with a high
speed, scatters from the binary and flies away. The problem is similar to the two-
body scattering of Section 3.13. We present the discussion of three-body scattering
following Gould (1991).

The limitation to small and fast third bodies allows us to make an important
simplifying assumption: (1) the orbital positions of the binary members remain
fixed during the encounter. Additionally we assume that (2) the scattering is a two-
body scattering from one member of the binary while the influence of the second
member is neglected.

Let the third-body mass be ms and the masses of the binary components ma

and mb. The relative velocity of the binary components is v0 = ṙa − ṙb, and the
approach velocity of the third body at large distance from the binary is us , relative
to the centre of mass of the binary. Relative to the binary component of mass ma

141
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ϕ

va

ma

mb

θ
us

ms

Figure 6.1 The scattering of the third body (mass ms) from one of the binary com-
ponents (mass ma). The asymptotic arrival direction is specified by the orientation
angle ϕ and by the impact distance b which is related to the scattering angle θ . In
the centre of mass system of the binary the velocity of the third body is us and the
velocity of the binary component va = (M/ma) v0.

the asymptotic approach velocity is

u = us − M
ma

v0. (6.1)

Here M is the reduced mass:

M = mamb

ma + mb
. (6.2)

The scattering of the third body from the body of mass ma is now calculated
assuming that the process is not influenced by the binary component of mass mb.
We then carry out the calculation in the centre of mass frame of bodies with masses
ms and ma . In that frame the initial speed of the latter body is

v
(0)
|| = − ms

ms + ma
u. (6.3)

After the two-body scattering the same quantity becomes

v
(1)
|| = − ms

ms + ma
u cos θ (6.4)

where θ is the deflection angle. The speed in the perpendicular direction is

v
(1)
⊥ = − ms

ms + ma
u sin θ (6.5)

(see Fig. 6.1). Therefore the change of speed in the parallel direction is

�v|| = v
(1)
|| − v

(0)
|| = ms

ms + ma
u(1 − cos θ )

= 2ms

ms + ma
u sin2 θ

2

(6.6)
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u∆t

b

db

us

ms

Figure 6.2 A stream of particles enters a cylindrical ring with speed u. The volume
2πb db u�t includes all the particles which have entered the ring during the time
interval �t . If the rate of entry is �N/�t , there are �N particles of mass ms
inside the cylindrical ring.

and in the perpendicular direction

�v⊥ = v
(1)
⊥ − 0 = − ms

ms + ma
u sin θ. (6.7)

The total change is

�v =
√

�v2
|| + �v2

⊥ = ms

ms + ma
u
√

sin2 θ + (1 − cos θ )2

= 2ms

ms + ma
u

√
1

2
(1 − cos θ ) = 2ms

ms + ma
u sin

θ

2
.

(6.8)

As long as the orbital positions of the binary members do not change, the change
in the binding energy |EB | of the binary comes solely from the change in the kinetic
energy:

−�|EB | = �

(
1

2
Mv2

0

)
= 1

2
M(�v)2 + Mv0 · �v (6.9)

where �v = �v0 is the velocity change induced on the binary component. We have
made use of the vector formula for two vectors A and B,

�(A · B) = �A · B + A · �B + �A · �B,

and have put A = B = v0. The first term is obviously positive, while it turns out
that the second term is negative on average. Therefore the two terms are called the
gain term and the loss term, respectively.

Let us now consider a stream of ‘third’ bodies streaming parallel to each other
with speed u and going through a ring of impact distances between b and b + db
(Fig. 6.2). We cut a piece of length u�t from this stream, where �t is a time
interval from the present time backwards. All the bodies which have entered the
ring during the interval �t are now somewhere inside the double walls formed by
the two concentric cylinders. The volume inside the double walls is 2πb db u�t .
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bmax

aB

Figure 6.3 A stream of particles entering through a catchment radius bmax is
channelled through the binary orbital radius by gravitational focussing.

If the rate of bodies entering the ring is �N/�t , then there are �N bodies of mass
ms in this volume. Thus the mass density is

ρ = �Nms

2πb db u�t
(6.10)

which gives the rate

�N

�t
= 2πb db uρ

ms
. (6.11)

From Eqs. (3.58) and (3.59) we get

2πb db = 2π
a2

4

sin θ dθ

sin4(θ/2)
(6.12)

where a and b are the semi-major and semi-minor axes of the hyperbolic third-body
orbits.

Associated with each body which enters the ring there is the energy gain

1

2
M(�v)2 = 1

2
M
(

2
ms

ma + ms

)2

u2 sin2 θ

2
. (6.13)

Thus the rate of energy gain over the whole ‘applicable’ range of θ is

−d|EB |
dt

=
∫ π

θmin

2π
a2

4

sin θ

sin4(θ/2)

uρ

ms

1

2
M
(

2
ms

ms + ma

)2

u2 sin2 θ

2
dθ

= 2π
a2

4

uρ

ms

1

2
M
(

2
ms

ms + ma

)2

u2
∫ π

θmin

sin θ

sin4(θ/2)
sin2 θ

2
dθ.

(6.14)

The minimum scattering angle θmin is related to the maximum distance bmax from
which the scattering can take place without undue influence from the other binary
member (see Fig. 6.3). The maximum scattering distance is

bmax = a

tan (θmin/2)
≈ Gma/u2

sin(θmin/2)
. (6.15)
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The last step involves the assumption that θmin/2 is small and thus
tan(θmin/2) ≈ sin(θmin/2). This is true when v0/u � 1 as we will see shortly. The
maximum scattering range bmax should be related to the semi-major axis of the
binary

aB = G(ma + mb)

v2
0

≈ 2Gma

v2
0

(6.16)

if ma and mb are not very unequal.
To get a definite value for bmax, let us require that bmax = 1

2aB , i.e.

Gma

u2

1

sin(θmin/2)
≈ Gma

v2
0

which gives

sin
θmin

2
≈ v2

0

u2
. (6.17)

Now we may proceed to evaluate the integral in (6.14):∫ π

θmin

sin θ dθ

sin2(θ/2)
= 4

∫ π

θmin

cot

(
θ

2

)
d

(
θ

2

)

= 4

∣∣∣∣
π

θmin

ln

(
sin

θ

2

)
≈ 4 ln

u2

v2
0

.

Then

−d|EB |
dt

= 4π
G2msρM

u
ln

u2

v2
0

. (6.18)

The second binary component makes an equal contribution and doubles the total
value: (

−d|EB |
dt

)
gain

= 8πG2msρM
u

ln
u2

v2
0

. (6.19)

The calculation of the loss term takes place in the same manner. We start by
noting that the �v vector may be divided into the components parallel to u, �v ||
and perpendicular to u, �v⊥. Then the Mv0 · �v term is also divided similarly
and it is the sum of Mv0 · �v || and Mv0 · �v⊥. The latter term averages to zero
when we add results from all different orientation angles ϕ. For every angle ϕ there
is an equally likely scattering with ϕ + π , from the opposite side of the binary
component. The scatterings from the opposite sides produce velocity changes �v⊥
in opposite directions and thus cancel each other (Fig. 6.4).
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∆v

∆v

Figure 6.4 For each contribution �v⊥ there is an opposite contribution equal in
magnitude.

This approximation is not always justified since the other binary component also
influences the scattering. Here we will neglect this influence, but we will return to
the problem in Sections 6.6 and 6.8 where this approximation cannot be correct.

We are then left with only theMv0 · �v || term which represents frictional drag on
the binary component. After making use of �v = �v || = �v||u/u, and substituting
the expressions for u and �v||, we have

M(v0 · �v) = M(v0 · u)
�v||

u

= M
[

v0 ·
(

us − M
ma

v0

)]
2ms

ms + ma
sin2 θ

2
.

(6.20)

Let us consider first the product v0 · us . If the angle between the two vectors is χ ,
then v0 · us = v0us cos χ . During the orbital cycle of a circular binary the angle χ

varies between limits π/2 ± χmax. For every value of π/2 + χ there is an equally
likely value π/2 − χ ; since cos(π/2 + χ) = − cos(π/2 − χ ), the contributions
from the opposite sides of χ = π/2 cancel each other, and the average over one
orbital cycle 〈v0 · us〉 = 0 (Fig. 6.5).

As a consequence, when ms � ma ,

M(v0 · �v) = − 2ms

ms + ma

M2

ma
v2

0 sin2 θ

2

≈ −2ms
M2

m2
a

v2
0 sin2 θ

2
.

(6.21)

As far as the θ factors are concerned, this is of the same form as the term
1
2M(�v)2, and we can use the previous result for the integral over θ . The loss term
is obtained from the gain term simply by replacing

c1 = 1

2
M
(

2
ms

ma

)2

u2
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us

v0

v0 • us

Figure 6.5 In a circular orbit the velocity vector v0 rotates uniformly through
360◦. At opposite phases, 180◦ from each other, the products v0 · us are equal in
magnitude but opposite in sign. Therefore 〈v0 · us〉 = 0 over a complete orbital
cycle.

by

c2 = −2
M2

m2
a

msv
2
0 .

It is achieved by multiplying (d|EB |/dt)gain by c2/c1 which gives

(
−d|EB |

dt

)
loss

= −8πG2ρM2v2
0

u3
ln

u2

v2
0

. (6.22)

The net change of the binding energy is the sum of gains and losses, i.e.

d|EB |
dt

= 16πG2ρM
u3

ln
u2

v2
0

(|EB | − Es) (6.23)

where

|EB | = 1

2
Mv2

0 (6.24)

is the binding energy of the binary and

Es = 1

2
msu2 ≈ 1

2
msu2

s (6.25)

is the kinetic energy of the third body far away from the binary.
It is common terminology to say that a binary is hard if |EB | > Es , and soft if

|EB | < Es . The above equation then leads us to the conclusion (so called Heggie’s
law, in fact first discovered by Gurevich and Levin in 1950): Hard binaries become
harder, soft binaries become softer. The derivation of Heggie’s law in the general
three-body problem is more complex since the assumptions (1) and (2) stated above
are not generally valid.
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bmax

A1 aB

A2

Figure 6.6 The focussing factor ν is the ratio of the two areas, A1/A2 = πb2
max/πa2

B .

When the binary is very hard, |EB | � Es , Eq. (6.23) becomes

d|EB |
dt

= 8πG2ρM2v2
0

u3
ln

u2

v2
0

. (6.26)

6.2 Evolution of the semi-major axis and eccentricity

The evolution of the binary is often more easily visualised through the evolution of
its semi-major axis than its binding energy. Therefore for hard binaries influenced
by a constant stream of small bodies the quantity

ȧB

aB
= − 2aB

MG(ma + mb)

d|EB |
dt

= RaπaB G ρ/u (6.27)

is studied where Ra is a dimensionless quantity

Ra = − 16M
ma + mb

v2
0

u2
ln

u2

v2
0

. (6.28)

Before looking at this constant more closely, let us consider the other factors on
the right hand side of Eq. (6.27) and their physical significance. Using Eq. (6.16)
it may be factorised as follows:

ȧB

aB
= Ra

(
πa2

B

) ( ρu

ma + mb

)(
v2

0

u2

)
. (6.29)

The factor πa2
B is the surface area of the binary orbit while the factor ρu is the

mass flow rate of third particles per unit area; the division by ma + mb normalises
it to the total binary mass. This is necessary since the rate of change of the binary
semi-major axis is also normalised to the value of the semi-major axis aB . The
product of these two factors is thus the normalised mass flow rate through the
surface area of the binary orbit. The last factor is related to focussing: the stream
which goes through the binary orbit is actually captured from a wider cross-section
of the stream, and is channelled through the binary area (Fig. 6.6).
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The focussing may be described by the focussing factor ν:

ν = πb2
max

πa2
B

=
G(ma + mb)

u2 pmax

G(ma + mb)
v2

0
aB

= v2
0

u2

pmax

aB
. (6.30)

Here the catchment areasπb2
max of both binary members have been added. Requiring

that the maximum value of the parameter pmax = aB gives the focussing factor

ν = v2
0

u2
. (6.31)

The choice of the value for pmax/aB depends on the problem at hand. The factor
ν could be augmented by another factor, as we will do in Example 6.1. At present
the second factor does not matter.

Now we may return to the constant Ra . At very large values of u2/v2
0 the function

(v2
0/u2) ln(u2/v2

0) → 0, and it may well be approximated by a function ∝ v2
0/u2.

Our theory does not apply at the opposite limit u2/v2
0 → 0, but it is reasonable to

assume that Ra should approach some constant value as u2/v2
0 → 0. At the lower

end of the range of applicability of the theory, at u2/v2
0 ≈ 2, we find Ra ≈ −1 for

equal binary masses, ma = mb. A function which satisfies the above requirements
is

Ra = − 6.5

1 + 0.6 (ma + mb)2

mamb
u2

v2
0

. (6.32)

It has been found to agree well with numerical experiments (Fig. 6.7; Mikkola and
Valtonen 1992, Quinlan 1996).

Besides the semi-major axis the eccentricity of the binary orbit is also of interest.
Eccentricity e is related to the semi-major axis a and the angular momentum per
unit mass k by Eq. (3.28):

k2 = aµ(1 − e2) = µ2(1 − e2)/2|h|.

Therefore

e2 = 1 − 2|h|k2

µ2

and

d(e2)

d|h| = −2k2

µ2
− 4|h|k · dk

µ2 d|h|
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Figure 6.7 A comparison of Eq. (6.32) (curve) with numerical experiments (+,
Mikkola and Valtonen 1992). Experiments use a range of binary eccentricities
from 0.1 to 0.99, except for the last three points on the right which have e = 0.5
only.

from which it follows

d(e2)

d(ln |h|) = −(1 − e2) − n
dkζ

d|h| (1 − e2)1/2. (6.33)

Here dkζ is the ζ -component of the change in the angular momentum, i.e. the
component perpendicular to the binary plane (Example 5.2), and the mean motion
n is

n = (2|h|)3/2

µ
. (6.34)

In the restricted three-body problem the absolute value of the change in orbital
energy of the third body d|h| is related to its change in angular momentum dkζ (per
unit mass) by (Example 5.2)

d|h| = −n dkζ . (6.35)

In the present case we do not quite meet one of the central criteria of the restricted
problem, i.e. ms = 0. However, since ms � ma + mb we may assume that the
above relation holds at least in some limiting sense. Since the energy and the
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orbital plane

∆v

∆v

Figure 6.8 The third body passes the binary on two sides of one of the compo-
nents. The corresponding changes in angular momenta dk are equal in magnitude
but opposite in sign. These components of angular momenta cancel each other
pairwise.

angular momentum are conserved, we expect Eq. (6.35) to be true also for the
binary: the energy gain by the third body is a loss to the binary, and the same is also
true for the angular momenta. Therefore for a circular binary

dkζ

d|h| = −1

n
(6.36)

and consequently

d(e2)

d(ln |h|) = −(1 − e2) + (1 − e2)1/2. (6.37)

Putting e = 0 we get our first result, true for every individual orbit and therefore
also for the orbit average: a circular binary remains circular.

For eccentric binaries Eq. (6.36) does not hold exactly. However, it may still
be true on average if the binary orbits fast. Fast rotating binaries with all different
major axis orientations form a collection of orbits which looks somewhat like a
single circular binary from the point of view of a slowly approaching third body.
Thus at the limit of u/v0 → 0, Eq. (6.37) should be correct.

At the opposite limit, u/v0 → ∞, the scattering is almost like a pure two-body
scattering from a stationary binary component. Then we expect that for every orbit
passing the binary component from one side there is a corresponding orbit passing it
from the other side, with equal but opposite contributions to the change in the angular
momentum (Fig. 6.8). Therefore, at this limit we expect d(e2)/d(ln |h|) → 0. A
function which satisfies these requirements and also gives the correct value at
e = 0 is

d(e2)

d(ln a)
= (1 − e2) − (1 − e2)1/2+ f (u/v0), (6.38)
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Figure 6.9 A comparison of Eq. (6.38) with numerical experiments (+ Mikkola
and Valtonen 1992; Quinlan 1996, equal masses; Quinlan 1996, unequal
masses). The relative approach speed is u/v0 = 0.1.

where f (u/v0) → 0 when u/v0 → 0 and f (u/v0) → 1
2 when u/v0 → ∞. Here

we have used the identity d(ln |h|) = −d(ln a) to make the derivation with respect
to ln a.

On the basis of numerical experiments different forms of f (u/v0) have been
suggested (Mikkola and Valtonen 1992, Pietilä 1999). A simple function which
may be used is

f (u/v0) =
{

u/v0 if u/v0 < 0.5

0.5 if u/v0 ≥ 0.5.
(6.39)

Figure 6.9 shows how this function compares with the numerical experiments when
u/v0 = 0.1.

6.3 Capture of small bodies by a circular binary

When a small body passes by a circular binary it may lose enough energy to
become bound to the binary and thus to form a temporary triple system with the
binary components. Let us consider this capture problem in the approximation of
the previous section, i.e. let us calculate the velocity change �vs of the small body
of mass ms when it is scattered by a binary component of mass ma (the small body
mass ms � ma). At a large distance from the binary the small body has a speed
us relative to the binary while the relative velocity of the binary components is v0.
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ma

mb

(mb/mB)v0

ms us

Figure 6.10 The capture of a particle of mass ms by a binary. The particle comes
from a large distance with speed us but remains close to the binary after scattering.

Therefore at a large distance from the binary, the velocity of the small body relative
to the binary component is u = us − (mb/m B)v0, where mb is the mass of the other
component and m B = ma + mb (Fig. 6.10). If the scattering angle is θ , the change
of speed is (Eq. (6.8))

�vs = 2u sin
θ

2
. (6.40)

The differential cross-section dσ for scattering into the interval θ, θ + dθ is
(Eqs. (3.58) and (3.59))

dσ = 2π
a2

4

sin θ dθ

sin4(θ/2)

≈ πa2
B

(
ma

m B

)2
v4

0

u4

cos(θ/2)

sin3(θ/2)

dθ

d(�vs)
d(�vs).

(6.41)

We have made use of u2 = Gma/a and v2
0 = Gm B/aB where a and aB are the

semi-major axes of the small body orbit relative to the binary component and of
the binary, respectively. The differential dθ has been written as a product

dθ

d(�vs)
d(�vs) = d(�vs)

u cos(θ/2)
.

At the limit of vs � v0 roughly half of the scatterings lead to a positive �vs and
the other half to negative �vs . In case of capture we are interested only in the latter.
Thus for captures the differential cross-section is, after substituting �vs/2u for
sin(θ/2),

dσcap ≈ 4πa2
B

(
ma

m B

)2
v4

0

u2

d(�vs)

(�vs)3
. (6.42)

The total capture cross-section σcap is obtained by integrating dσcap over �vs .
The lower limit of integration is us which corresponds to the total loss of the initial
kinetic energy of the small body. The upper limit corresponds to sin θ/2 = 1, i.e.
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�vs = 2u. Therefore

σcap ≈ 4πa2
B

(
ma

m B

)2
v4

0

u2

∫ 2u

us

d(�vs)

(�vs)3

≈ 2πa2
B

(
ma

m B

)2
v2

0

u2
s

.

(6.43)

The last near equality is based on the assumption that us � v0 and u ≈ v0.
In equal mass binary systems both components contribute equally to the capture

cross-section. When the two contributions are added together

σcap

(
ma = 1

2
m B

)
≈ πa2

B

v2
0

u2
s

. (6.44)

We will find later (Eq. (8.23)) essentially the same result in the general three-body
problem (for zero eccentricity binary; for high eccentricities there is a correction
factor of about 1.8). Numerical experiments (Hills 1989, 1992) demonstrate that
the capture probability is indeed insensitive to the mass ms of the incoming body.

6.4 Orbital changes in encounters with planets

The Sun, a planet and a small body is a three-body system which is an application
of the restricted three-body problem. The orbits of planets are generally close to
circular, and the mass of the small body (asteroid, comet) is negligible in comparison
with the mass of a planet. Since the mass of the planet is also much smaller than the
mass of the Sun, we may view the small body moving in an elliptical or hyperbolic
orbit around the Sun, until by chance a planet happens to come close to its path and a
two-body scattering from the planet takes place. After the scattering the small body
finds itself in a new orbit about the Sun. We will now study some of the properties
of the orbital changes resulting from the planet encounters (see Fig. 6.11). Here we
follow the discussion by Everhart (1968, 1969).

In Section 6.1 we found that when a small body (mass ms) passes a planet (mass
ma), the latter receives a velocity change (Eq. (6.8))

�v = 2ms

ma
u sin

θ

2
ê. (6.45)

Here we have cast the equation in vectorial form by using the unit vector ê which
points from the planet towards the pericentre of the orbit (Fig. 6.11 (a)). As long as
the scattering angle θ is small, ê is nearly perpendicular to the incoming velocity u
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(a)

ma

ê

v0

α

b̂

δγ

u

θ

ms

(b) Sun

Jupiter

Figure 6.11 Hyperbolic encounter of a comet with Jupiter as seen from the jovi-
centric frame (a) and from the heliocentric frame (b). The heliocentric velocity
of Jupiter v0 is generally off the plane of the two-body encounter shown in (a).
Similarly, the different portions of the orbit in (b) may be in different planes.

(at large distance from the planet). Under the same assumption

sin
θ

2
≈ tan

θ

2
= Gma

u2b
(6.46)

where b is the impact parameter.
The velocity change of the planet is generally so small that we can ignore the

(�v)2 term in Eq. (6.9). Thus the energy change of the planet is

�Ea = mav0 · �v = 2msu sin
θ

2
v0 · ê. (6.47)

The change in the orbital energy of the small body is equal to this but opposite in
sign. The orbital energy of the small body is

Es = −Gmsmb

2a
(6.48)

where mb is the mass of the Sun and a is the semi-major axis of the elliptic orbit
of the small body relative to the Sun. The change in its orbital energy is

�Es = −Gmsmb

2
�

(
1

a

)
= −2msu sin

θ

2
v0 · ê. (6.49)
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Figure 6.12 Collision plane.

Thus

�

(
1

a

)
= 4

(
ma

mb

)
1

ub
v0 · ê. (6.50)

Let us define the dimensionless energy change U by

U = mb

ma
�
(aB

a

)
= 4

v0aB

ub
cos α, (6.51)

where α is the angle between the vectors v0 and ê (Fig. 6.11 (a)). We now ask
how U is distributed in encounters between small bodies and a planet when the
encounters happen in a random way. We have to consider the distributions of b and
cos α in the encounters.

In Fig. 6.12 we have drawn the ‘collision plane’, the plane perpendicular to u
which passes through the planet. We take a surface element dA = b db dϕ of this
plane, at distance b from the planet. Angle ϕ measures the angular distance from
the projection of v0 onto this plane to the crossing point. The relative orientation
of v0 is further specified by δ, the angle between v0 and u.

From the spherical triangle with sides ϕ, α and 90◦ − δ we obtain cos α =
cos ϕ sin δ. We substitute this in Eq. (6.51) above and solve for b:

b = 4v0aB

uU
cos ϕ sin δ

from which

dA = b db dϕ =
(

4v0aB sin δ

u

)2 dU

U 3
cos2 ϕ dϕ. (6.52)
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The cross-section for scattering such that the dimensionless energy change U lies
in the interval [U, U + dU ] is

dσ (U ) dU =
(

4v0 sin δ

u

)2

a2
B

dU

U 3

∫ +π/2

−π/2
cos2 ϕ dϕ. (6.53)

The integration is extended only through one half of the ϕ range since one half of
the phase angle range produces positive U and the other half produces negative
U . Writing |U |3 in place of U 3 covers both situations. Therefore the cross-section
from either positive or negative U is given by

dσ (U ) dU =
(

4v0 sin δ

u

)2

a2
B

dU

|U |3
∣∣∣∣
π/2

−π/2

1

2

(
ϕ + sin 2ϕ

2

)

= 1

2
Fa2

B

dU

|U |3 ,

(6.54)

where

F = 16π (v0/u)2 sin2 δ. (6.55)

The value of F depends on the parameters of the small body orbits. The angle δ

is the polar angle for which we may assume that cos δ is a uniform random variable
(say R) between −1 and +1. Thus

〈
sin2 δ

〉 = 1 − 〈cos2 δ
〉 = 1 − 〈R2

〉 = 2

3
. (6.56)

The relative speed u is generally greater than v0; we may estimate that typically
u averages to

√
2v0, the parabolic pericentre speed at the distance aB when the

total mass is mb. Here we are thinking of bodies like comets on nearly parabolic
trajectories. For randomly distributed orbits we therefore expect F = (16/3)π ;
experimentally 〈F〉 ≈ 4.5π (Everhart 1969). An extension of the experiments to
large values of |U | shows that in fact the power-law is steeper than |U |−3, more like
|U |−3.5. At small values of |U |, |U | ∼< 6, the power-law flattens to |U |−1 (Valtonen
and Innanen 1982; Fig. 6.13).

6.5 Inclination and perihelion distance

The parameters which are usually used to describe the small body orbit are its
inclination ι0 and pericentre distance q0 relative to the binary. The initial pericentre
distance is normalised to the binary semi-major axis: Q = q0/aB . If the remaining
orbital elements of the small body orbit (ω and �) are not well known or can be
considered random in some sense, then it is not immediately clear how specific
values of ι0 and Q should enter into sin δ which is needed in Eq. (6.55) above.
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Figure 6.13 A comparison of the theoretical expression (Eq. (6.54)) for the
cross-section dσ (U ) with numerical experiments from Valtonen and Innanen
(1982). On the vertical axis we plot |U |3dσ (U ) and therefore a horizontal line
would represent Eq. (6.54). The data points follow more closely two lines of
slopes +2 (i.e. σ (U ) proportional to |U |−1) and −0.5 (i.e. σ (U ) proportional to
|U |−3.5), the dividing line being at about |U | = 6.

It is best to use numerical orbit calculations to derive the (ι0, Q) dependence of
F .

Everhart (1968) produced extensive tables of F at specific values of ι0 from 3◦

to 177◦ and at the values of Q ranging from 0.005 to 2. We cannot expect to find a
simple analytic formula which fits all the data. However, it is possible to represent
the data with fair accuracy by using two helpful features. First, the dependence on
ι0 is typically a function of 1 + cos ι0. We will learn more about this in Section 10.4.
Second, the distribution of F peaks close to ι0 = 0 and ι0 = 180◦; at both ends of
the inclination spectrum these peaks can be fairly represented by a (sin ι0)−1 factor,
as long as ι0 > 1◦ and ι0 < 179◦ (Valtonen et al. 1992).

The use of the (sin ι0)−1 factor is also handy since in randomly distributed orbits
the inclination distribution is

f (ι0) dι0 = 1

2
sin ι0 dι0. (6.57)
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When we take the product F f (ι0) dι0, the sin ι0 factors cancel each other, and we
get a distribution which is relatively smooth from ι0 = 1◦ to ι0 = 179◦. This kind
of distribution is expected, for example, for the comets captured from the Oort
Cloud. The original inclination of the Oort Cloud comets follows Eq. (6.57) above
quite well; therefore the numbers of comets captured from the Cloud at different
inclinations ι0, which are proportional to F f (ι0) ∝ F sin ι0, vary rather smoothly
with ι0. In the following we will thus search for an expression for F sin ι0 as a
function of some power of 1 + cos ι0.

A fit to the data by Everhart (1968) shows that at small values of Q, 0.002 ≤
Q ≤ 0.1, the function is linear:

F sin ι0/π ≈ 0.8 + 4(0.1 − Q) + [0.7 − 5(0.1 − Q)] (1 + cos ι0). (6.58)

The expression may be extended even down to Q = 0.005 by putting Q = −0.01
in the above equation. With increasing Q the distribution becomes more strongly
biased towards cos ι0 = 1.

For Q ≥ 0.1 this bias becomes so strong that a linear function of 1 + cos ι0 is
not satisfactory but a higher power of 1 + cos ι0 is needed. The actual value of this
power increases with Q. At the same time the linear coefficients of Q have to be
replaced by power-laws. Altogether a fitting function

F sin ι0/π = (1 − Q)
[
1 + (1 − Q)−1.75 Q0.3(1 + cos ι0)1.75−0.5(1−Q)

]
(6.59)

is obtained. It is derived for the range 0.1 ≤ Q ≤ 0.9, but its validity may be
extended to the range 0.9 ≤ Q ≤ 1.25 by the following trick: in place of Q,
put

Q′ = 0.938 exp
(−|Q − 0.97|1.2

)
(6.60)

in Eq. (6.59). Then the data from Everhart (1968) are well represented, except at
Q > 1 close to ι0 = 0◦ where F sin ι0 is actually greater than the predicted value.
In other words, at Q ≥ 1 the distribution of F is more strongly peaked towards
ι0 = 0 than the simple (sin ι0)−1 factor would indicate. Figures 6.14 and 6.15 show
how well the fitting functions agree with numerical data.

The strong inclination dependence is easy to see qualitatively from the form
of F . In direct orbits the small body and the planet move in the same sense and
the relative speed u is small and F is large. On the contrary, in retrograde orbits
the two bodies move against each other and u is relatively large and F small.
When the orbital plane of the small body is close to the orbital plane of the
planet, there is less free room for the bodies to miss each other and scatterings
are more likely; thus the two peaks in the function f (ι) at the two ends of the
spectrum.
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Example 6.1 Capture of interstellar bodies by the Solar System.
If small bodies come in hyperbolic orbits from outside the Solar System we have

to consider the focussing of the stream of bodies by the Sun. It is this focussed,
more dense stream of bodies which crosses the collision plane. Let us say that the
speed of the stream far away from the Sun is us and that a3 is the semi-major axis
of the small body orbit relative to the Sun. The corresponding impact parameter is
b3, the parameter of the orbit is p3 and the pericentre distance is q3.

The focussing factor is

ν = πb2
3

πa2
B

= a3 p3

a2
B

= a3(1 + e3)q3

a2
B

≈ (1 + e3)
a3

aB
= (1 + e3)

v2
0

u2
s

(6.61)

since q3 ≈ aB in order that the small body stream passes the Sun at the distance
of the planet (see Fig. 6.3 and discussion there). Here e3 is the eccentricity of the
small body orbit, e3 > 1. Its value depends on the velocity us . At values of us/v0

appropriate for Galactic bodies we may choose e3 = 9. The right hand side of
Eq. (6.54) is to be multiplied by this augmented focussing factor.

Considering that the actual power-law slope is |U |−3.5 rather than |U |−3, we may
write the probability distribution as (Fig. 6.13)

f (|U |) = 1.3 × 10−3

(
10

|U |
)3.5

.

If we require a capture of the incoming body, then the energy change has to be at
least

G M��

(
1

a3

)
= u2

s

or

u2
s = v2

0 10−3|U |.
Transform to the distribution of us :

f (us) = f (|U |)d|U |
dus

= 2.6 × 10−7v−1
0 (v0/us)6.

This is multiplied by the focussing factor ν and integrated from us to infinity to
obtain the capture probability:

Pcapture = 2.6 × 10−6v−1
0

∫ ∞

us

(
v0

us

)8

dus = 3.7 × 10−7

(
v0

us

)7

.
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Since the orbital speed of Jupiter is v0 = 13.1 km/s,

Pcapture ≈ 25

(
km/s

us

)7

and the capture cross-section is

σcapture ≈ 25πa2
J

(
km/s

us

)7

,

where aJ = 5.2 AU is the radius of Jupiter’s orbit (Valtonen and Innanen 1982).

6.6 Large angle scattering

In the previous derivation it was assumed that the scattering angle θ is small. If it
is not small, more exact expressions have to be used:

sin
θ

2
= tan(θ/2)(

1 + tan2(θ/2)
)1/2 = K

(1 + K 2)1/2
(6.62)

where

K = tan
θ

2
= Gma

u2b
. (6.63)

The unit vector ê is not exactly perpendicular to u. Let us say that the unit vector
perpendicular to u is b̂ and that it lies along the line of the impact distance b. Then
the unit vector ê is obtained from b̂ by rotating the latter through an angle θ/2 in
the plane common to u and b̂. Therefore

ê = b̂ cos
θ

2
+ u

u
sin

θ

2
=
(

b̂ + K
u
u

)/
(1 + K 2)1/2. (6.64)

Then

�

(
1

a

)
= 4u sin(θ/2)

Gmb
v0 · ê

= 4

(
ma

mb

)
1

b

v0

u

1

(1 + K 2)
(cos γ + K cos δ),

(6.65)

where γ is the angle between v0 and b̂ (Fig. 6.11 (a)). When K → 0 we recover
our earlier result (Eq. (6.50)).

Let us now consider the special case of coplanar orbits and the pericentre dis-
tance of the incoming orbit q ≈ aB , i.e. a ‘grazing’ encounter with the planet (see
Fig. 6.16). Then γ = π/2 ± δ and cos γ ≈ ±δ as long as δ is a small (posi-
tive) angle. For direct orbits cos δ ≈ 1, for retrograde orbits cos δ ≈ −1. Since
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b̂
ms

εaB

v0

γ

δ

Figure 6.16 A grazing encounter between a small body of mass ms and a planet.
The orbital speed of the planet is v0, and it is shown at the point of contact of the
two orbits. The normal in the orbital plane to the approach direction of the small
body, at the time of its entry to the influence of the planet, is vector b̂, and γ is the
angle between v0 and b̂. It differs from π/2 by the small angle δ.

K = tan θ/2, (1 + K 2)−1 = cos2(θ/2) and we have for direct orbits,

�

(
1

a

)
direct

≈ 4

(
ma

mb

)
1

b

v0

u
cos2 θ

2

(
tan

θ

2
± δ

)
. (6.66)

As long as |δ| � tan(θ/2),

�

(
1

a

)
≈ 2

(
ma

mb

)
v0

u

sin θ

b
. (6.67)

For retrograde orbits the sign is reversed.
We should note that for direct orbits �(1/a) is always positive (θ is positive

by definition), i.e. a decreases in the encounter. In retrograde counters �(1/a) is
always negative. This is in contrast to our earlier result of small angle scattering that
�(1/a) is equally likely to be positive or negative, and that the net overall change
is zero. Figure 6.17 illustrates the ratio of positive to negative changes �(1/a) as a
function of the normalized pericentre distance Q = q/aB and initial inclination ι0

of the small body orbit. The corner Q ≈ 1, ι0 ≈ 0◦ is dominated by positive �(1/a)
while the corner Q ≈ 1, ι ≈ 180◦ is dominated by negative �(1/a). But the effect
is not restricted entirely to these special points and the influence is seen also in the
surrounding regions of the (Q, ι0) initial value space.

As before, we calculate the probability for an energy change
U = (mb/ma)aB�(1/a). The calculation is simplified if we approximate
tan(θ/2) � 1, or θ � π/2, and thus (using Eq. (6.63) in the last step)

sin θ = 2(tan(θ/2))/(1 + tan2(θ/2))

≈ 2 tan(θ/2) ≈ 2Gma/

[(√
2 − 1

)2
v2

0b

]
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Figure 6.17 The probability (cross-section) of a parabolic comet obtaining the
semi-major axis a ≤ 40 AU after an encounter with Jupiter or obtaining the cor-
responding positive energy change. The diagram illustrates the fraction which the
negative energy changes form of the total probability (negative + positive). The
results are plotted as a function of perihelion distance (aJ = 1) and inclination of
the initial orbit. In the diagram the arrows point to Everhart’s capture region (JF)
and to the retrograde excess region of Halley type comets (HT).

since u ≈ us − v0 ≈ √
2v0 − v0 =

(√
2 − 1

)
v0 for a direct parabolic incoming

orbit. This leads to

U ≈ 4(√
2 − 1

)3

a2
B

b2
,

dU ≈ −2U

b
db.

(6.68)

The probability for an impact within the interval [b, b + db] is

dσ ≈ − db

εaB
= 1

2ε

b

aB

dU

U
= 1(√

2 − 1
)3/2

ε

dU

U 3/2
, (6.69)

where εaB is a typical value of b which can be considered to give an effective
‘grazing’ encounter. Clearly ε < 1, since the distance of dominance of Jupiter’s
gravitational influence is (ρ2)d = 0.048; numerical experiments suggest that ε =
0.02 is a good value to use. With this choice Eq. (6.69) is found to agree well
with experiments (Fig. 6.18; Valtonen et al. 1998). For retrograde orbits

√
2 − 1 is

replaced by
√

2 + 1 which predicts lower probability than in direct orbits. Since ε
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Figure 6.18 A comparison of the distribution of U in theory (Eq. (6.69)) and in
experiments (Valtonen et al. 1998). A planar system with ι = 0◦ (+) and ι = 180◦
(×) is considered, with Q = 0.99. For direct orbits U < 0, for retrograde orbits
U > 0. The line for the retrograde orbits is drawn a factor of 1.8 below the line
for direct orbits.

is also smaller for retrograde orbits than for direct orbits, we cannot predict how
much smaller the retrograde probability is in comparison with the probability for
direct orbits. Experimentally the ratio is about 1.8 (Fig. 6.18). Note that there are
also positive energy changes in direct planar orbits; their probability is lower than
the probability of negative energy changes by a factor of about 30 at all levels
of |U |. Similarly, the probability for negative energy changes in retrograde planar
orbits is lower than the probability for positive energy changes by a factor of about
14 (Valtonen et al. 1998).

6.7 Changes in the orbital elements

When the orbital energy changes by U there is also a change in other orbital
elements. The change is controlled by the Tisserand parameter

T = 1

a
+ 2
√

a(1 − e2) cos ι (6.70)

which must remain constant (Problem 5.2). Consider for example, a parabolic
initial orbit for which a = ∞ and a(1 − e2) = 2q0, q0 being the original pericentre
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Figure 6.19 The distribution of the cosine of the new inclination after scattering
from a parabolic orbit to a new orbit of a = 5.77aB . The cosine of the initial
inclination (30◦) is shown by a vertical line while an arrow indicates where the
centre of the distribution is shifted. Another arrow tells the amount of spread of
the distribution, defined so as to leave 10% of the distribution outside in the tails.
The curve refers to Q = 0.5.

distance. Then the initial inclination ι0 and the final inclination ι are related by

cos ι =
√

2q0

q(1 + e)
cos ι0 − 1

2a
√

q(1 + e)
= A cos ι0 − B

a
(6.71)

where A and B are functions of q(1 + e), a is the semi-major axis of the final
elliptical orbit and q is the corresponding pericentre distance. It is obvious that
even for a fixed a and q0 there is no single value of ι which would result from the
scattering since q(1 + e) may adopt different values. To find out how ι is distributed
we use numerical experiments (Valtonen et al. 1992, Zheng 1994).

The inclination cannot change if ι0 = 0◦ (except into ι = 180◦). At this limit
(when sin ι0 = 0) A → 1 and B → 0. This suggests that we use a fitting function
of the form

cos ιc = cos ι0 − 0.38 sin2 ι0 Q−1/2(aB/a) (6.72)

to describe the central value ιc of the distribution of ι (see Fig. 6.19). From
Eq. (6.71) we see that B ∝ q−1/2; it is then quite natural that B ∝ q−1/2

0 , and
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Figure 6.20 The shift in the centre of the inclination distribution as a function of the
inverse of the new semi-major axis a (in units of aB). Data points are from Zheng
(1994) for four inclinations: ι = 5◦ (�), ι = 30◦ (+), ι = 60◦ (×) and ι = 90◦ ( ).
The lines refer to Eq. (6.72), and Q = 0.5.

since Q = q0/aB , B ∝ Q−1/2. Thus the shift in cos ι is greatest at small val-
ues of Q. Equation (6.72) should not be used below Q = 0.1, except by putting
Q = 0.1 independent of the actual value of Q; otherwise we get a singularity
when Q → 0.

The details of Eq. (6.72) come from numerical experiments. They show that the
peak of the distribution of new cos ι is shifted from cos ι0 and that the distribution is
spread by � cos ι. Figure 6.19 shows the distribution of cos ι for Q = 0.5, ι0 = 30◦

and aB/a = 0.173. The centre of the distribution cos ιc is shifted from the original
value cos ι0 by an amount which is derived from Eq. (6.72). The shift varies with
Q, a and ι0. Figures 6.20 and 6.21 show that Eq. (6.72) agrees with experiments at
different ι0, Q and a.

In terms of U , Eq. (6.72) becomes

cos ιc = cos ι0 + 0.38 × 10−3 sin2 ι0 Q−1/2U. (6.73)

If U is negative, cos ιc < cos ι0 and ιc > ι0. Thus the inclination tends to increase
when a body is captured. The opposite happens when a body is expelled to a more
distant orbit.
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Figure 6.21 The shift in cosine of inclination as a function of Q in scattering with
U = −173. The data points from Zheng (1994) are for ι = 30◦ (+), 60◦ (×), 90◦
( ), 120◦ ( ) and 150◦ (�). The lines follow Eq. (6.72). Note that at high Q and
retrograde orbits the Tisserand parameter seriously restricts the cos ι distribution,
and therefore the data points for ι = 120◦ and 150◦ are missed at the high Q end.

When these expressions are used one must always check that ιc is consistent with
the Tisserand parameter. The limitation set by the Tisserand parameter truncates
the allowable distributions of ι to such an extent that in extreme cases even the
predicted central value ιc is outside the range of possible values.

The spread of cos ι values around the central value cos ιc may be described
similarly. Numerical data are well fit by

� cos ι = 0.68 sin ι0
(
0.15 + 0.85 cos2 ι0

)
Q−1/2(aB/a) (6.74)

= 0.68 × 10−3 sin ι0
(
0.15 + 0.85 cos2 ι0

)
Q−1/2U.

The definition of the spread � cos ι is such that 90% of scatterings end up in the
interval (see Fig. 6.19)

cos ι = cos ιc ± � cos ι. (6.75)
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6.8 Changes in the relative orbital energy of the binary

Finally, we will return briefly to the changes in the binary orbital energy. The
changes of orbital energy are relatively minor in the Sun–planet binary due to
small-body interactions. However, a very similar problem arises in connection with
three stars interacting with each other. This is really the topic of the next chapters,
but here we prepare the ground a little by using the above approximations in the
general three-body problem.

The relative change in the binding energy of the binary is approximately (Eqs.
(6.46), (6.47) and (6.51))

� ≈ �Ea

EB
≈ 2msuGma/(u2b)

Gmamb/(2aB)
v0 · ê = ms

mb
U. (6.76)

Including the focussing factor ν ≈ (v0/us)2, the differential cross-section for
changes in the relative binary energy � is (Eqs. (6.54) and (6.55), after change
of variable and multiplication by ν)

dσ (�)

d�
d� ≈ 8π

(v0

u

)2
sin2 δa2

B

(
ms

mb

)3 (
v0

us

)2 d�

|�|3 . (6.77)

In place of v2
0/u2

s we may use a new variable v2 which will be justified in Section
8.1 (see Eq. (8.11)):

v2
0

u2
s

= msm2
B

Mmamb

1

v2
. (6.78)

In the stellar case the two components of the binary may act equally well as scatter-
ing centres. Therefore the factor (ms/mb)3 in Eq. (6.77) could be (ms/ma)3 equally
well. To obtain the required symmetry relative to ma and mb, we arrange the mass
values in two factors:

m3
s

Mmamb

msm2
B

m3
b

.

We replace the second, asymmetric factor by 4, its value in the equal mass case. If
〈(v2

0/u2) sin2 δ〉 = 1/3 as before (Eq. (6.56) and u = √
2v0), we have

dσ (�)

d�
d� ≈ 32

9

3m3
s

Mmamb

(
πa2

B/v2
) d�

|�|3 . (6.79)

This expression has been derived more rigorously by Heggie (1975) who has shown
that it applies to incoming speeds v � |�|−1. Also numerical experiments have
shown that the expression is good for high incoming velocities only. A more detailed
discussion is deferred to Section 10.7 where Figs. 10.16 and 10.17 compare the
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theory with experiments. The limitation to high velocities is quite reasonable since
our central assumption, scattering from one binary component while the other
‘stands still’, requires quick action and thus a high incoming speed. The experiments
also show the excess of σ (� < 0) over σ (� > 0). This is due to the v0 · �v⊥ term
(Eq. (6.9) and the discussion following it in Section 6.1) which causes a net loss of
the binary energy. So far we have neglected this term.

Problems

Problem 6.1 A comet comes from the Oort Cloud and has a semi-major axis
a = 3 × 104 AU, pericentre distance relative to Jupiter Q = 0.2 and inclination
ι0 = 90◦. What is the probability that it will encounter Jupiter and that its new
semi-major axis will lie between 29 AU and 31 AU? What is the most likely value
of its new inclination, assuming that the new semi-major axis is 30 AU? What is
the corresponding new value of Q? The semi-major axis of Jupiter is 5.2 AU.

Problem 6.2 The nearest stellar system to us (besides the Sun) is the binary star
α Centauri. Its orbit has a semi-major axis a = 26 AU. One of the stars is a little
more massive (1.19M�) and the other a little less massive (0.9M�) than the Sun.
Close to these two stars is a third one (Proxima Centauri), a low mass star. Find the
cross-section for capture of Proxima Centauri by the α Centauri binary system for
the Galactic field where the typical speed is u ≈ 20 km/s. The number density of
stars in the Galactic field is about 0.1/pc3. How long would it take on average to
have one star captured?

Problem 6.3 Let us assume that the α Centauri binary was born in a star cluster
with the mass density of stars ρ = (105 M�/pc3)t−3/2 and with the typical relative
velocity between the stars u = 4.3 km/s t−1/2, where t is the age of the cluster in
millions of years (t ≥ 2). Calculate the original value of the semi-major axis of the
binary at t = 2 if the α Centauri binary stayed in the cluster for a period of 108

years. Hint: use an average value for Ra , calculated at t = 50.

Problem 6.4 Calculate the change of eccentricity of the α Centauri binary using
the assumptions of the previous problem. The correct eccentricity of the binary is
taken to be 0.96.

Problem 6.5 Calculate the value of the focussing factor for the α Centauri binary
when the speed of the incoming stream is (a) 1 km/s, (b) 10 km/s, (c) 100 km/s.
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Escape in the general three-body problem

7.1 Escapes in a bound three-body system

When three self-gravitating bodies are placed inside a small volume, the three-body
system becomes unstable. Sooner or later one of the bodies leaves the volume and
the two other bodies form a binary system. By recoil, the binary also leaves the
original volume and escapes in the opposite direction from the single body. This
instability is not at all obvious and the breakup of the bound three-body system
was established as a general evolutionary path only after extensive computer sim-
ulations in the late 1960s and early 1970s. As mentioned in Chapter 1, there are
exceptions to this but generally they do not represent much of the initial value space.

The breakup may be permanent in which case we say that the third body has
escaped from the binary. However, sometimes the third-body motion is slowed
down sufficiently that the third body returns and a vigorous three-body interaction
resumes again. Then the breakup stage is called an ejection. We start by studying
escape orbits, and will come to ejections in Section 8.3.

These orbit calculations and later ones have shown that the orbit behaviour of a
three-body system is essentially chaotic. The chaoticity can be shown, for example,
as follows. Take a given three-body configuration with position vectors r1, r2 and
r3 and velocity vectors ṙ1, ṙ2 and ṙ3 for the three bodies labelled 1, 2 and 3. Let their
masses be m1, m2 and m3. From this initial configuration we calculate the future
orbits of the three bodies using a computer. We may plot the orbits as a function
of time or, for purposes of simplicity, choose some quantity which describes the
motion and plot this quantity as a function of time. In Fig. 7.1 we show the time
evolution of the distance d from the centre of mass of the three bodies. Also shown
are the corresponding plots of orbits which start from slightly different positions
r1 + dr1, r2 + dr2, r3 + dr3. For a while, for about two larger periods of the system,
the two sets of orbits deviate from each other only slightly, but during the third cycle
the orbits start to diverge and after that no similarity remains.

171
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Figure 7.1 The time evolution of a three-body system with small variations is
shown. The y axis displays the distances of the three bodies from the centre of
mass while the x axis is time in units of crossing time. In addition, a slight variation
is introduced to the original system by moving the initial position of one of the
bodies by at most 10−3 distance units. In this way 100 almost identical three-body
systems are studied, and the time evolutions of all of the systems are superimposed
on the same plot. We see that the time evolution tracks start to diverge strongly
after about six crossing times, and beyond about 12 crossing times chaos sets in
(Heinämäki et al. 1999).

When slightly different initial paths lead to quite different end results, the system
is chaotic. Typically the breakup of a three-body system happens after several cycles
of the system and therefore the breakup happens in a chaotic way. Thus it may seem
at first sight that a physical description of the breakup process is difficult. Indeed,
the details of breakup of any given bound three-body system are unpredictable prior
to the actual orbit calculation. However, the chaoticity allows one to describe the
breakup in a statistical sense. In a large number of systems which have similar
(but not identical) initial states, the statistical distributions of the orbital properties
are stable and predictable. Often this is enough, just as in the theory of gases, we
do not normally want to know the detailed orbital history of every molecule but
rather it is enough to know the bulk properties such as temperature and pressure.
In the same way, it is often enough to know the statistical distributions of the
three-body breakup and the corresponding bulk numbers which describe these
distributions.
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Figure 7.2 The basic configuration of three bodies after the body with mass ms has
escaped from the binary with component masses ma and mb. The current speed of
the escaper relative to the binary centre of mass is vs and the current distance rs .
The separation of the binary components is r at this time.

In the statistical theory of the disintegration of three-body systems (Monaghan
1976a, b) one assumes that the probability of a given escape configuration is pro-
portional to the volume in phase space available to this configuration. This is the
case if the escaping body makes use of all channels available to it, without any pref-
erences. That this should be the case is not immediately obvious, but results from
other theoretical approaches as well as from numerical orbit calculations support
this assumption.

Let us divide the three-body system in two parts: a binary of components ma

and mb, total mass m B = ma + mb, and a third body (escaper) of mass ms . The
total mass of the system is then M = m B + ms . Let r be the separation vector
between the two binary components and r s the position vector of the third body
relative to the centre of mass of the binary (see Fig. 7.2). The kinetic energy of
the binary motion is 0.5(mamb/m B) ṙ2. As before, we write M ≡ mamb/m B and
m ≡ m Bms/M , which are the reduced masses of the relative motions of the binary
and the third body, respectively. When the third body is far from the binary, its
potential energy is Vs = −Gmsm B/rs , while the potential energy of the binary is
−Gmamb/r . Thus the total energy of the three-body system is

E0 = 1

2
mṙ2

s + 1

2
Mṙ2 − G

mamb

r
− G

msm B

rs
(7.1)

or

E0 = Es + EB (7.2)

where the energy is divided between the escaper energy Es and the binary energy
EB .

The density of escape configurations per unit energy σ is obtained by integrating
over the phase space volume, with the phase space coordinates r , r s, p, ps where
p and ps are the momenta of the relative motions corresponding to r and r s . In the
integral Eq. (7.2) has to be satisfied. Mathematically, this is achieved by placing
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the delta function δ(Es + EB − E0) in the integrand. Then there is a contribution
to the integral only if (7.2) is satisfied, i.e. when δ = ∞ and the integration over δ

is unity. Otherwise δ = 0. Thus

σ =
∫

· · ·
∫

δ

(
p2

s

2m
+ Vs + EB − E0

)
d r s dps d r dp (7.3)

where we have put Es = p2
s /2m + Vs .

Besides the total energy E0, the second conserved quantity is L0, the total angular
momentum of the system. It is made up of two vector components, the angular
momentum of the binary LB = M(r × ṙ ) and the angular momentum of the escaper
relative to the binary Ls = m(r s × ṙ s). We may require that L0 = LB + Ls is a
constant for all possible escape orbits in which case the integrand of the phase space
integral also contains a factor δ(LB + Ls − L0). This forces the possible choices
of LB and Ls such that L0 = constant. The discussion is started by neglecting the
second δ-function which means that L0 can vary from case to case. However, there
are some limitations on the angular momentum of the escaper Ls which must be
justified.

A useful approach to take is the so-called loss cone method. Let us assume that
the escaper at a distance rs from the binary centre has come to this point along
a straight line orbit. It must have come from the neighbourhood of the binary;
otherwise it would not have acquired the escape velocity. The neighbourhood of
the binary may be defined for our purposes as a circular area, perpendicular to the
vector r s , with the radius of some simple multiple na, where a is the semi-major
axis of the binary. The latter is related to the binary energy EB by

a = −Gmamb

2EB
. (7.4)

The multiple n in the definition of the neighbourhood of the binary comes
from experience with orbit calculations, and is n ≈ 7. It is further discussed in
Chapter 8. The choice of the value seven which at first sight appears rather arbitrary
leads to a good agreement between analytic theory and numerical experiments.

The straight lines drawn from the point r s through the circle of radius 7a define
a cone; this is called the loss cone because particles travelling in reverse direction
from the apex of the cone to the binary will generally be scattered away from
the cone, and thus these orbits are ‘lost’. In the current problem we can say that
only the orbits within the loss cone are true escape orbits since they have been
strongly influenced by the binary in the past. The loss cone directions contain
approximately the fraction of π (7a)2/4πr2

s = 12.25(a/rs)2 of the whole sphere of
radius rs surrounding the escaper (see Fig. 7.3).
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Figure 7.3 The loss cone. The escaping body, at the apex of the cone, must have
come from inside the cone in order for there to have occurred a strong interaction
with the binary in the past. In reverse, bodies falling into the cone will interact
efficiently with the binary and will be perturbed to new orbits. Thus these orbits
are ‘lost’.

Let us first carry out the integration over the momentum space ps , with a uniform
distribution of directions over the whole sphere. Then

∫ ∫ ∫
δ

(
p2

s

2m
+ Vs + EB − E0

)
dps

= 4π

∫ ∞

0
δ

(
p2

s

2m
+ Vs + EB − E0

)
p2

s dps

= 4πm
∫ ∞

0
δ

(
p2

s

2m
+ Vs + EB − E0

)
ps d

(
p2

s

2m

)

= 4πm
∫ ∞

0
δ [x − (E0 − Vs − EB)]

√
2mx dx

= 4πm
√

2m(E0 − Vs − EB)

(7.5)

where we have substituted x = p2
s /2m. The last equality follows from the property

of the delta function: ∫ ∞

0
f (x)δ(x − a) dx = f (a),

where f (x) is any function.
The right hand side of Eq. (7.5) has to be multiplied by the loss cone factor

(49/4)(a/rs)2. Then we proceed to carry out the integration over r s . Since the
integrand depends only on the radial coordinate rs , d r s = 4πr2

s drs , and the integral
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becomes

4 × 49π2
√

2m3/2a2
∫ R

0

√
E0 − EB + Gmsm B/rs drs, (7.6)

where the upper limit R of the rs range is considered a free parameter. Let us denote
x2 = rs , i.e. 2x dx = drs and

y = E0 − EB

Gmsm B/R
.

Then the integration is easily carried out:∫ √
R

0
2
√

Gmsm B

√
y

R
x2 + 1 dx

=
∣∣∣∣
√

R

0

2
√

Gmsm B

×
⎡
⎣ x
√

y
R x2 + 1

2
+ 1

2
√

y/R
ln

(
x

√
y

R
+
√

y

R
x2 + 1

)⎤⎦
=
√

Gmsm B R

[√
y + 1 + 1√

y
ln
(√

y +
√

y + 1
)]

.

The function in the square brackets has the value of 2.3 when y = 1 and it ap-
proaches 2 when y → 0. If R is relatively small, say R = 3a0, this is more or less
the range of interest of y. As a slowly varying function of y the square bracket
may therefore be put equal to 2. Here a0 is the initial semi-major axis of the binary
before the three-body interaction. Using msm B = mM and Eq. (7.4) we get finally

σ = 98
√

2π2(G M R)1/2m2(Gmamb)2
∫

· · ·
∫

dr dp
|EB |2 . (7.7)

In order to see the significance of the remaining integrals, spherical polar coor-
dinates (r, θ, φ) are useful. Then (Eq. (4.88), θ → π/2 − θ ; we now measure the
θ -coordinate from the pole rather than from the equator, contrary to Chapter 4)

EB = 1

2

p2

M − Gmamb

r

= 1

2M
(

p2
r + 1

r2
p2

θ + 1

r2 sin2 θ
p2

φ

)
− Gmamb

r

from which

dEB

dpr
= 1

M pr ,

dpr = M dEB

pr
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and

pr = [2MEB + Gmamb2M/x − k2/x2 − p2
φ/x2 sin2 θ

]1/2
(7.8)

where we have used x ≡ r and k ≡ pθ .

The square of the total angular momentum vector is (see Eq. (4.94), noting that
θ → π/2 − θ )

L2 = k2 + p2
φ

sin2 θ
,

pφ = sin θ
√

L2 − k2,

dpφ = sin θ L dL/
√

L2 − k2,

from which it follows that

pr = [2MEB + Gmamb2M/x − L2/x2
]1/2

. (7.9)

The integral in Eq. (7.7) is then written as

∫ ∫
dEB

E2
B

Mdk
(

sin θ/
√

L2 − k2
)

L dL dx dθ dφ[
2MEB + Gmamb2M/x − L2/x2

]1/2 . (7.10)

The integrals over θ and φ give
∫ π

0

∫ 2π

0 sin θ dθ dφ = 4π . The integral of k is

∫ L

−L

dk√
L2 − k2

=
∣∣∣∣

L

−L

arcsin

(
k

L

)
= π.

The integral over x is∫ x2

x1

x dx[−L2 + 2GmambMx − 2M|EB |x2
]1/2 ,

which is of the form∫
x dx√

C + Bx − Ax2

= − 1

A

√
C + Bx − Ax2 + B

2A3/2
arcsin

2Ax − B√
B2 + 4AC

.

The limits of the integration are the zero points of Ax2 − Bx − C = 0 or

x1,2 = B ± √
B2 + 4AC

2A
.
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At the integration limits

2Ax − B√
B2 + 4AC

= ±1

and the second term gives

π B

2A3/2
= π

2

2GmambM
(2M|EB |)3/2

= π

2
√

2

G(mamb)1/2m1/2
B

|EB |3/2
.

Since the first term goes to zero at both limits, this is also the total contribution of
the integral over x . Combining the integrations over θ , φ, k and x together with
Eq. (7.7), not forgetting the M-factor in Eq. (7.10), we find

σ = 2 × 98π5(Gmamb)7/2 R1/2m3/2
B M−3/2m2

s

∫ ∫
dEB

|EB |7/2
L dL .

Since

L2 = M (Gmamb)2

2|EB | (1 − e2),

L dL = −M (Gmamb)2

2|EB | e de,

(7.11)

the final form is

σ = 98π5(Gmamb)11/2 R1/2m3/2
B M−3/2m2

sM
∫ ∫

dEB

|EB |9/2
e de. (7.12)

For the moment, let us consider only the quantities which follow the integral
signs and forget the coefficients in front of them. These quantities represent the
distributions over which one has to integrate in order to obtain the total phase space
volume. These are the fundamental distributions in which we are interested. Thus
the distribution of |EB |, normalized to unity, is

f (|EB |) d|EB | = 3.5|E0|7/2|EB |−9/2 d|EB |. (7.13)

This result has also been derived starting from a different theoretical concept
(Heggie 1975). Assume that the binaries are in a field of single bodies which
constantly interact with each other. Then the concept of detailed balancing requires
that the formation and disruption of binaries are reverse processes and that they
occur at such rates that an equilibrium is established. Equation (7.13) represents
such an equilibrium distribution. We will discuss this point further in Section 8.2.
Figure 7.4 compares the distribution with numerical data. The case of Vs = 0 is
left as an exercise (Problem 7.1); it leads to a slightly different distribution of bind-
ing energies (Monaghan 1976a). In some older sources (Jeans 1928) one finds a
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Figure 7.4 A comparison of Eq. (7.13) with experimental data (Mikkola 1994).
In the numerical experiments all masses are equal. In the first set of experiments
(+) the third body falls straight into a binary; in the second set (♦) the third body
has an additional transverse velocity component uniformly distributed between
given limits. The quantity plotted is z = |E0|/|EB |. Due to change of variables,
the expected distribution is of the form f (z) = 3.5z2.5, shown by the dashed line.
The experimental points come from two data sets of 10 000 experiments each, and
thus have such small error bars that they are not shown. What is more important is
the value of the total angular momentum: the first set has L = 0.15 and the second
one has a range from L = 0.15 to L = 0.92, with the median around L = 0.48
(see Section 7.5 for the definition of the units). We notice that Eq. (7.13) gives
a fair description of the data in some average sense, but that the value of the
total angular momentum plays an important role in changing the shape of the
distribution.

power-law index −5/2 instead of −9/2 in Eq. (7.13) due to a different derivation.
This is well outside the experimental range as we will see later (Section 7.5).

The corresponding distribution of eccentricities is

f (e) de = 2e de. (7.14)

See Fig. 7.5 for a comparison with numerical experiments.

7.2 A planar case

When the motions are restricted to a plane, Eq. (7.5) gives 2πm which is to be
multiplied by

2π

∫ R

0

14a

2πrs
rs drs = 14a R = 7

Gmamb

|EB | R.
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Figure 7.5 A test of the eccentricity distribution of Eq. (7.14) (straight line) using
10 000 computer orbit solutions from Mikkola (1994), with angular momentum
L = 0.15.

This leads to

σ = 14πmGmamb R
∫

1

|EB | dr dp,

and after we put θ = π/2, pφ = 0, Eq. (7.12) becomes

σ = 7π3m(Gmamb)3MR
∫ ∫

dEB

|EB |3
e de√
1 − e2

. (7.15)

Thus the planar case gives

f (|EB |) d|EB | = 2|E0|2|EB |−3 d|EB |, (7.16)

and

f (e) de = e(1 − e2)−1/2 de (7.17)

which is also found in numerical orbit calculations (see Fig. 7.6). The details of the
derivation of Eq. (7.15) are left as an exercise (Problem 7.2).

7.3 Escape velocity

The escape energy Es = |EB | − |E0| is obtained from Eq. (7.2) when the bi-
nary energy EB is known. We substitute this into Eq. (7.12) and integrate over
e,
∫ 1

0 e de = 1/2, after which there remains

σ = 49π5(Gmamb)11/2 R1/2m3/2
B M−3/2m2

sM
∫

dEs

(|E0| + Es)9/2
.
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Figure 7.6 The distribution of eccentricities in the breakup of planar three-body
systems. Equation (7.17) is compared with numerical experiments from Saslaw
et al. (1974), excluding very high angular momentum systems. Note that the
horizontal axis is e2 which makes the distribution of Eq. (7.14) flat. The rise of
the distribution towards e → 1 is very prominent due to the (1 − e2)−1/2 factor in
Eq. (7.17).

Let us denote the velocity of the escaper in the centre of mass coordinate system
by vs . Then

vs = m B

M
|ṙ s |,

Es = 1

2
m|ṙ s |2 = 1

2

msm B

M

M2

m2
B

v2
s = 1

2

ms M

m B
v2

s ,

dEs = ms M

m B
vs dvs,

and

σ = 49π5(Gmamb)11/2 R1/2m1/2
B M−1/2m3

sM
×
∫

vs dvs(|E0| + 1
2 (ms M/m B)v2

s

)9/2 .
(7.18)

The escape velocity distribution is therefore

f (vs) dvs =
(
3.5|E0|7/2ms M/m B

)
vs dvs(|E0| + 1

2 (ms M/m B)v2
s

)9/2 . (7.19)
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Figure 7.7 The escape velocity (vs) distribution of Eq. (7.19) is compared with
numerical experiments from Saslaw et al. 1974. The appropriate mean escaper
mass value is ms ≈ 0.2M . The escape speed vs is in units of the original binary
speed v0.

The peak of this distribution is obtained by putting d f (vs)/dvs = 0:(
|E0| + 1

2

ms M

m B
v2

s

)−11/2 (
−4

ms M

m B
v2

s + |E0|
)

= 0,

(vs)peak = 1

2

√
(M − ms)

ms M

√
|E0|.

The corresponding calculation in the two-dimensional case gives (Problem 7.4)

σ = 7π3(Gmamb)3MRm2
s

∫
vs dvs(|E0| + 1

2 (ms M/m B)v2
s

)3 ,

(vs)peak =
√

2(M − ms)

5ms M

√
|E0|.

(7.20)

See Fig. 7.7 for a comparison with numerical data. In this and in the following
displays of numerical data we use the unit system of Saslaw et al. (1974): The
gravitational constant G = 1, the initial semi-major axis of the binary a0 = 1, the
binary mass m B = 1, and the mean orbital speed v0 = 1. The idea is that the bound
three-body system can be divided into a close binary and a more distant third body at
the initial moment, and the semi-major axis of the close binary serves as a yardstick
for measuring distances.

For velocities, a good standard is the original binary speed v0. It is defined by
Eq. (6.24) and by assuming that initially the binary has practically all the energy
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of the system:

|E0| = 1

2
Mv2

0 .

Then the normalised escape velocity v = vs/v0 is distributed as

f (v) dv =
(

7
ms M

mamb
v dv

)(
1 + ms M

mamb
v2

)−9/2

.

At the limit of small escaper mass (ms ∼< 0.17), and at the limit of large escaper mass
(ms = m B) the corresponding accumulated distributions are (putting ma = mb)

F(v) = (1 + v2)−3.5,

F(v) = (1 + 8v2)−3.5,
(7.21)

respectively. These two limits will be discussed in Chapter 11. The peak velocity is

vpeak = 1

2
√

2

√
mamb

ms M
,

which gives vpeak = 0.35 and vpeak = 0.125 at the two limits. Note that for escaper
masses smaller than ms = 0.17 this limiting value is used in the above formulae.
At small ms the velocities do not go to inifinity as the formulae would predict, but
approach the values given by ms = 0.17 (Valtonen 1976a).

7.4 Escaper mass

Now we ask what is the probability that the body of mass ms escapes, rather than
one of the other two (ma or mb). In order to complete the integration of Eq. (7.18)
to obtain the phase space volume per unit energy, one needs to calculate the integral∫ ∞

0

vs dvs(|E0| + 1
2 (ms M/m B)v2

s

)9/2

= −
∣∣∣∣
∞

0

2

7

m B

ms M

1(|E0| + 1
2 (ms M/m B)v2

s

)7/2

= 2

7

m B

ms M

1

|E0|7/2
.

Therefore

σ = 56
√

2π5G3 R1/2a5/2
0

(m B

M

)0.5
M−1m2

s (mamb)4|E0|−1

∝ (mamb)4m2
s

(7.22)
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for a given energy |E0|, for a given volume a2.5
0 R0.5 and for a given total mass M .

Note that use has been made of Eq. (7.4) to connect |E0| and a0, assuming that the
initial binary binding energy is ≈ |E0|, and that it corresponds to the initial binary
semi-major axis a0 before the strong three-body interaction. This procedure brings
out the volume factor a2.5

0 R0.5 and the energy factor |E0|−1 explicitly. There is an
additional weak dependence on ms in the m B/M factor since m B = M − ms , but
this is a small correction which can be generally ignored.

The probability that ms is the escaper is thus

σs ∝ (mamb)4m2
s

while the corresponding probabilities for the masses ma and mb to escape are

σa ∝ (msmb)4m2
a,

σb ∝ (msma)4m2
b.

These have to be normalized to unit probability, i.e. to σa + σb + σs . The normalized
probability for mass ms to escape is therefore

Ps = (mamb)4m2
s

(mamb)4m2
s + (msmb)4m2

a + (msma)4m2
b

which, after division by (mambms)4 becomes:

Ps = m−2
s

m−2
s + m−2

a + m−2
b

(7.23)

(Problem 7.5).
The corresponding results for the planar case (Problem 7.6) are

σ = 7

2
π3G3(mamb)4 R(ms/M)|E0|−1

and

Ps = m−3
s

m−3
s + m−3

a + m−3
b

(7.24)

which is compared with numerical experiments in Fig. 7.8.

7.5 Angular momentum

In numerical orbit calculations it has been found that the distributions of binary
energy |EB | as well as the probability that the body with mass ms escapes are
functions of the total angular momentum L0. The first indications of this trend
have been seen already: the distribution of |EB | was found to be different for three-
dimensional and planar systems. Since L0 = 0 implies that LB and Ls are equal
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Figure 7.8 The probability of escape of mass m following Eq. (7.23) (dashed line)
and in numerical experiments in Saslaw et al. (1974). The latter are a roughly
even mixture of planar cases and three-dimensional cases. The mass ratio ma/mb
influences the result somewhat. Here it was assumed to be 3/2, a typical value in
the experiments.

and opposite, the motion must be restricted to a plane (Problem 7.7). Therefore it
is not surprising that the distributions derived for the planar motion are generally
good for all L0 = 0 systems.

At the end of large L0, close to its maximum possible value Lmax, we may argue
that the escaper’s angular momentum Ls dominates. Then LB has to be small in
order that the vector sum Ls + LB is large independent of the relative orientations
of the two vectors. Equation (7.11) tells us that this is the case when |EB | is large.
Equation (7.13) indicates that the probability for the binding energy to be greater
than |EB | is proportional to |EB |−7/2. When Eq. (7.12) is multiplied by this factor,
we deduce that for very high angular momentum

σ ∝
∫ ∫

d|EB |
|EB |8 e de. (7.25)

More generally, from numerical calculations the distribution of |EB | becomes

f (|EB |) d|EB | = (n − 1)|E0|n−1|EB |−n d|EB | (7.26)

where the power-law index varies smoothly from n = 3 at L0 = 0 to n = 14.5
at L0 = 0.8Lmax (see Figs. 7.9 and 7.10). The value of the maximum angular
momentum is (Mikkola 1994; see Sections 2.12 and 5.7)

Lmax = 2.5G
(
m5

0/|E0|
)1/2

(7.27)
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Figure 7.9 The distribution of f (z) = (n − 1)zn−2 where n is the power-law index
of Eq. (7.32). The three lines are for n = 3 (dotted line), n = 3.5 (dash-dot line) and
n = 5.5 (strongly curving dash-dot line). The data points are from experimental
sets with L = 0, L = 0.4 (Mikkola and Valtonen 1986, 600 experiments in each
set) and L = 0.15 (Mikkola 1994, 10 000 experiments). The close association
between the power law index n and the angular momentum L is seen.
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Figure 7.10 As Fig. 7.9, but for higher angular momenta. The comparison curves
are for the power-law indices n = 9, 11.5 and 14.5, and the corresponding data
come from Mikkola and Valtonen (1986) (600 experiments per set). The functional
dependence between the power-law index n and the angular momentum L is
n = 18L2 + 3 on the basis of numerical experiments.

where m0 is the average mass of the three bodies. This average is defined by
(Marchal et al. 1984)

m0 =
√

mamb + mams + mbms

3
. (7.28)
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Figure 7.11 The distribution of the relative escape velocity v∞ (in units of original
binary speed v0) between the binary and the escaping body at three different values
of L . The experimental data are from Valtonen (1974) and the theoretical curves
use the power-law index n = 18L2 + 3. The curves are drawn for ms = 0.16M
which is a typical value in the experimental sample.

Generally Lmax > 3.5L B . It is convenient to normalise the angular momentum
L0 with Lmax. We label the normalised quantity simply by L in the following:
L = L0/Lmax.

The peak value of the escape velocity varies together with the changing |EB |
distribution. If we write

(vs)peak = α

√
M − ms

ms M
|E0| (7.29)

then α = √
2/5 = 0.63 when L0 = 0, α = √

1/7 = 0.38 when L0 = 0.5Lmax, and
α = 0.5 at the typical intermediate value of L0 (see Fig. 7.11).

The probability that a body of mass ms escapes has been found to be

Ps = m−q
s

m−q
s + m−q

a + m−q
b

(7.30)

where we previously derived q = 2. Also q is a function of L0: q = 3 at L0 = 0
and it decreases to q = 1.5 at L0 = 0.8Lmax. A typical intermediate value has been
found to be q = 2.5 (Monaghan 1977, Mikkola and Valtonen 1986, Mikkola 1994).

At zero angular momentum the eccentricity should be distributed as Eq. (7.17),
at large angular momentum the power law index of (1 − e2) should be more
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like +1/2 instead of −1/2 (Standish 1972, Monaghan 1976b). Both cases are
included in the general expression

f (e) = 2(p + 1)e(1 − e2)p, (7.31)

where the index p is found from numerical experiments (Valtonen et al. 2003):

2p = L − 0.5.

The angular momentum dependence of (7.26) is well described by

n − 3 = 18 L2 (7.32)

(Mikkola and Valtonen 1986, Valtonen 1976a, 1988, Valtonen and Mikkola 1991)
where L is the total angular momentum normalized to Lmax. The corresponding
formula for q has the form:

q = 3/(1 + 2L2). (7.33)

7.6 Escape angle

In this section the direction of escape in the decay of a bound three-body system is
discussed. Do the escapers go in every direction with equal probability, or are there
preferred escape directions? Numerical experiments have shown that the escape
directions are strongly concentrated in the plane perpendicular to the total angular
momentum (Saslaw et al. 1974, Valtonen 1974, Anosova and Orlov 1986).

In order to understand this concentration of escape directions, let us consider
what are the available breakup channels for the three-body system. Figure 7.12
illustrates the angular momentum vectors L0 and Ls , separated by an angle φ, and
the momentum vector of the escaper ps . This momentum vector lies in the plane
perpendicular to Ls , and its direction is described by two angles, ψ (position angle
in the plane) and θ (its angular distance from L0).

First, consider the simple case ψ = π/2, which, by the definition of the angle
ψ in Fig. 7.12, means that the above mentioned three vectors lie in a single plane.
In this case a simple relation holds between φ and θ : θ = π/2 − φ. The more
general expression, easily obtained from Fig. 7.12 by use of spherical trigonometry
(Problem 7.8), reads

cos θ = sin φ sin ψ. (7.34)

Figure 7.13 shows the triangle formed by the angular momentum vectors L0, Ls

and LB . From the triangle,

L2
B = L2

0 + L2
s − 2L0Ls cos φ (7.35)
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Figure 7.12 The geometry of the vectors L0, ps and the angles between them. The
momentum vector ps lies in a plane perpendicular to Ls while this plane is at an
angle φ relative to the fundamental plane perpendicular to L0. The direction of ps
is specified by the two angles θ and ψ .
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Figure 7.13 The relation between vectors L0, Ls and LB . L0 is the vector sum of
Ls and LB , and the angle between Ls and L0 is φ.

from which we solve L0:

L0 = Ls cos φ

[
1 +

√
1 + (L2

B − L2
s

)
/L2

s cos2 φ

]
. (7.36)

The use of the squares of angular momenta rather than the angular momenta
themselves is preferred because it was previously found (Section 7.1) that the
squares of angular momenta tend to be uniformly distributed in phase space. For
example, Eq. (7.11) tells us that L2 is proportional to 1 − e2, and 1 − e2 is uniformly
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distributed between 0 and 1 since e2 is uniformly distributed over the same range,
by Eq. (7.14). This applies most definitely to the binary but is not a bad first
assumption for the third-body orbit either. In that particular case, by Eq. (7.11),
L2

s ∝ a3(e2
3 − 1) = p3, where a3 = Gmsm B/2E3 and e3 is the eccentricity of the

escape orbit. The quantity p3 is the parameter of the orbit which would be uniformly
distributed for randomly incoming orbits. It does not need to be so for outgoing
orbits, but L2

s ∝ p3 is a natural phase space coordinate for describing escape orbits.
The natural phase space coordinate associated with φ is ζ = cos θ , since for random
relative orientations cos θ is uniformly distributed between −1 and +1 (see Problem
7.9). In the following, assume that the range of ζ is from 0 to 1. Experimentally, it
has been found (Anosova and Orlov 1986) that the distribution of ζ is symmetric
with respect to ζ = 0, and thus here it is not necessary to deal with the negative ζ

values.
Thus the new ‘natural’ coordinates are x = L2

s , y = L2
B and 1 − ζ 2 = cos2 φ in

Eq. (7.36), so that

L0 = √
x
√

1 − ζ 2
(

1 +
√

1 + (y − x)/(x(1 − ζ 2))
)

. (7.37)

The volume of the available phase space, on the condition that L0 is a constant,
is proportional to

σ =
∫ ∫ ∫

δ

[√
x
√

1 − ζ 2

×
(

1 +
√

1 + (y − x)/(x(1 − ζ 2))
)

− L0

]
dx dy dζ.

(7.38)

The limits of integration are x from 0 to ∞, ζ from 0 to 1, and y from 0 to the finite
maximum value ymax:

ymax = M(Gmamb)2/2|EB |. (7.39)

We note that the quantity inside the square root in Eq. (7.37) cannot be negative,
i.e.

1 + (y − x)/(x(1 − ζ 2)) ≥ 0 (7.40)

or

ζ 2 ≤ y/x . (7.41)

This restriction excludes considerable portions of phase space volume which
would be available otherwise. For all values of x � y, |ζ | is confined to the neigh-
bourhood of |ζ | ≈ 0, i.e. θ has to be close to 90◦. This is an important restriction
since x can range, in principle, from 0 up to ∞ while the y range extends only up
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to ymax. Therefore the escapers should be concentrated to the invariable plane, i.e.
to the plane perpendicular to the total angular momentum vector (Saari 1974).

To be able to handle the restriction imposed by Eq. (7.41) let us define a new
variable k in place of y

y/x = (k2 + 1)ζ 2 (7.42)

where k is a real number. Replace y/x in the square root of Eq. (7.38) by (k2 + 1)ζ 2

to obtain a new equation

σ =
∫ ∫ ∫

δ
[√

x
(√

1 − ζ 2 + kζ
)

− L0

]
2xkζ 2 dx dk dζ. (7.43)

In order to carry out the integration of the δ-function we introduce another new
variable w in place of x

w = √
x
(√

1 − ζ 2 + kζ
)

(7.44)

after which

σ =
∫ ∫ ∫

δ(w − L0)4kζ 2
(√

1 − ζ 2 + kζ
)−4

w3 dw dk dζ

=
∫ ∫

4kζ 2L3
0

(√
1 − ζ 2 + kζ

)−4
dk dζ.

(7.45)

The integration over k is carried out with the help of∫
x dx

(Ax + B)4
= − 1

2A2(Ax + B)2
+ B

3A2(Ax + B)3
(7.46)

and the limits of integration are from k0 to ∞. The result is

σ =
∫

F(ζ ) dζ (7.47)

where, using only the first term on the right-hand side of Eq. (7.46) which dominates
when Ax + B � 1, i.e. l0ζ � 1:

F(ζ ) ≈ 2l3
0(√

1 − ζ 2 + k0ζ
)3 . (7.48)

The preceding analysis has dealt with the special case θ = π/2 − φ or ζ = ζ0 =
sin φ. Recall that, in general, ζ = ζ0 sin ψ (Fig. 7.12), so that the distribution of
Eq. (7.48) is really for ζ0, not for ζ .

How does one then extract the distribution f (ζ ) from Eq. (7.48)? Note that
for each value of ζ0, there is a whole range of escape orbits corresponding to the
different values of ψ . These orbits have the property 0 ≤ ζ ≤ ζ0. There also exist
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escape orbits in the same range of ζ which are related to larger ζ0 values but because
of the steep fall-off of F(ζ0) with ζ0, these orbits are relatively uncommon. Thus,
in the first approximation, F(ζ0) gives the relative weight of all escape orbits up to
ζ ≤ ζ0. In other words,

F(ζ0) − F(0)

F(1) − F(0)
≈
∫ ζ0

0
f (ζ ) dζ. (7.49)

In this approximation, F(ζ ) is identified as being related to the accumulated distri-
bution of f (ζ ).

It is possible to simplify Eq. (7.48) by noting that when ζ → 0, ζ 2 ≈ 0. After
normalizing to make it a proper accumulated distribution, we adopt

F(ζ ) = (1 + k0)2

k0(k0 + 2)

[
1 − 1

(1 + k0ζ )2

]
, (7.50)

which has the desired property that F(0) = 0 and F(1) = 1 when k0 � 1. It follows
that

f (ζ ) = (1 + k0)2

k0 + 2

2

(1 + k0ζ )3
. (7.51)

Equation (7.42) suggests that the proper value for k0 is zero. However, numerical
experiments (Saslaw et al. 1974, Valtonen 1974, Anosova and Orlov 1986, Valtonen
et al. 2004) show that at high values of L , the effective range of k starts from k0

such that

k0 = 9L1.25. (7.52)

When L → 0 the distribution of f (ζ ) is flat, indicating that there is no preferred
escape direction relative to L0, as there cannot be when L0 = 0. A qualitatively
similar dependence was found by Nash and Monaghan (1978) using analytical
theory. Figure 7.14 illustrates the corresponding distributions of θ from the previous
equations at two values of L , together with experimental data:

f (θ ) = (1 + k0)2

k0 + 2

2 sin θ

(1 + k0 cos θ )3
. (7.53)
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Figure 7.14 The distribution of the escape angle θ in experiments (Valtonen et al.
2004) and by Eq. (7.53). The theoretical curves are for k0 = 2.2 and 17 while the
experiments have values L = 0.13, and 0.98. Experimental results are shown by
histograms, the theory by continuous lines.

Example 7.1 When a three-body system breaks up, the escape happens close to
the fundamental plane (Fig. 7.14). Then we may ask what is the projected angle
between the escape direction and the normal to the plane, if the system is viewed
from a random direction. Let us say for simplicity that the escape happens exactly
in the plane (θ = 90◦).

The answer is easiest to obtain by computer simulations. The result is different
depending on whether we consider an angle between the total angular momentum
vector and the escape velocity vector, or whether the angle is the acute angle between
the line of escape and the normal to the plane. In the former case the projection onto
the plane of the sky produces a distribution ranging from 0◦ to 180◦, while the latter
distribution is obtained from the former by folding the distribution from above 90◦

to below 90◦. The two distributions are shown by dashed lines in Figs. 7.15 and 7.16.
Together with the theoretical curves we plot data points from two different sets

of observational data. In Fig. 7.15 we have data for the angle between small scale
jets and jets in extended radio sources (Valtonen 1996 and references therein).
In general the data points agree well with the theoretical line, except at difference
angle ≈ 0◦. There the observations show an excess. At present it is not clear whether
this excess is due to observational selection, or whether it signifies two separate
classes of extended radio sources. One class is definitely related to bodies escaping
close to the fundamental plane while the second may signify the escape of large
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Figure 7.15 The angle between a vector in a plane and a vector perpendicular to
the plane, as viewed from different random directions (dashed line). The points
with error bars refer to the angle between a small scale jet and a large scale jet in
a sample of observed extended radio sources.

scale jets perpendicular to the fundamental plane. In both cases the small scale jet
is assumed to be perpendicular to this plane.

In Fig. 7.16 we show observational points for the difference angle between the
radio source axis and the minor axis of the light distribution in a radio galaxy. The
minor axis of the image tells which way the circular disk of the central plane of
the galaxy is tilted. It shows the projection of the symmetry axis of the disk in the
plane of the sky. Imaging has been done in the spectral line of ionized gas as well as
in red light coming from stars (McCarthy et al. 1995). The distributions from the
two imaging techniques are shown separately and they agree quite well with each
other as well as with the theoretical line. This agreement shows that extended radio
emission may be associated with bodies escaping along the fundamental plane
which is also the plane of concentration of interstellar gas and the plane of symme-
try of an oblate stellar distribution. Both the oblate stellar distribution and the plane
of gas concentration may be regarded as resulting from a merger of two galaxies
whose orbital angular momentum determines largely the fundamental plane for
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Figure 7.16 The angle between a line in a plane and a line perpendicular to the
plane, as viewed from different random directions (dotted line). The points with
error bars refer to the angle between the minor axis of gas distribution (+), or the
minor axis of stellar distribution (×), and the axis of extended radio emission in a
sample of radio galaxies.

gas, stars and the system of supermassive black holes in the centre of the merged
galaxy.

Problems

Problem 7.1 Show that the normalised distribution of binding energies is

f (|EB |) d|EB | = 105

16
|E0|3

√|EB | − |E0|
|EB |9/2

d|EB | (7.54)

if one uses

σ ∝
∫

· · ·
∫ √

E0 − EB

E2
B

dr dp

instead of Eq. (7.7). Show that this is the result of putting Vs = 0 in Eq. (7.5). Why
is this distribution not acceptable? Hint:

∫
(x − z)1/2 dx

x9/2
= 2

7

(x − z)3/2

zx7/2

(
1 + 4

5

x

z
+ 8

15

x2

z2

)
.
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Problem 7.2 Derive Eq. (7.15) starting from Eq. (7.3) in the case that the motion
is limited to a plane. Derive further the distributions of binding energy, Eq. (7.16),
and eccentricity, Eq. (7.17).

Problem 7.3 Using the binding energy distribution of Problem 7.1 instead of
Eq. (7.13), show that the peak of the escape velocity distribution is

(vs)peak =
√

4

7

(M − ms)

ms M
|E0|. (7.55)

Problem 7.4 Starting from Eq. (7.15), derive Eq. (7.20) and the corresponding
peak velocity (vs)peak.

Problem 7.5 Starting from the binding energy distribution of Problem 7.1 instead
of Eq. (7.13), show that Ps remains as in Eq. (7.23).

Problem 7.6 Starting from Eq. (7.20), show that in the case of planar motion, the
escape probability Ps is given by Eq. (7.24).

Problem 7.7 Show that if the angular momentum of the three-body system L0 =
0, the motion is restricted to a plane.

Problem 7.8 Using spherical trigonometry and the definitions of the angles θ , φ

and ψ as shown in Fig. 7.12, prove Eq. (7.34).

Problem 7.9 Show that if φ is an angle between two vectors which are randomly
oriented relative to each other, cos φ is uniformly distributed between −1 and +1.
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Scattering and capture in the general problem

8.1 Three-body scattering

Three-body scattering is a process where a third body comes from a large distance in
a hyperbolic orbit and interacts with a binary. The interaction may result in a capture
of the third body into the vicinity of the binary. Then we say that a resonance (a
long lasting state, as in atomic physics) has formed. We expect that the resonance
will finally end with an escape of one of the bodies. The other alternatives are
an exchange where the interaction leads to an immediate expulsion of one of the
binary members, or a flyby when the third body immediately leaves the scene of
the close interaction with the binary. These processes will be discussed in turn,
in the following sections. Here the basic theoretical groundwork is formulated,
using the results from Section 7.1. At very high energies the three bodies may fly
apart separately; then the process is called ionisation.

Sometimes a different definition of exchange is used: whenever one of the
original binary members is ejected, the process is called exchange. It may hap-
pen immediately (prompt exchange) or after an intermediate resonance (resonance
exchange). We do not follow this wider definition but define exchange as prompt
exchange.

The calculation of the scattering process is performed in two steps: (1) the
probability that the third body meets the binary is calculated, and (2) the probability
that the binary gains or loses a given amount of energy in the interaction with the
third body is estimated.

The scattering probability dσ thus has two parts: the geometrical cross-section
� for the two systems to meet each other and the probability f (�) for the energy
change to be in the interval (�, � + d�). Define the relative energy change

� = |EB | − |EB |0
|EB |0 (8.1)

197
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where |EB |0 is the original value of the binary binding energy and |EB | is its the
final value. By this definition

|EB | = (1 + �)|EB |0. (8.2)

The geometrical cross-section is a matter of definition. The weaker the interaction
to be considered, the larger is the interaction radius around the binary. In order
to get a well defined interaction radius and the corresponding geometrical cross-
section, we use an analogy with escape orbits. For escape orbits the geometrical
cross-section is the base area of the loss cone (see Fig. 7.3), i.e. πb2

max where bmax

is the maximum impact distance which gives a significant three-body interaction.
Before we adopted bmax = 7a0. The quantity b is the semi-minor axis of the orbit of
the third body relative to the binary centre of mass and it gives the asymptotic
distance between the binary centre of mass and the projected line of motion of
the third body coming from far away and without gravitational focussing. In a
hyperbolic orbit, the semi-major axis a3 and the maximum semi-minor axis bmax

are related by b2
max = a3 pmax. A typical value of the semi-latus rectum pmax in three-

body breakup is pmax = 4.7a0 which corresponds to bmax = 7a0 (Problem 8.1).
The interaction radius for three-body scattering is now defined to be the same

as for escape. It is not immediately obvious why this should be a good definition.
However, considering the time reversability of orbits, it is known that for every
escape orbit there is a corresponding scattering orbit, the two being identical ex-
cept for the sense of time. Therefore for the whole ensemble of escape orbits with
the maximum interaction radius bmax there is a corresponding ensemble of scatter-
ing orbits of the same strength of three-body interaction and of the same interac-
tion radius bmax. Note that in this ensemble the escape velocities vs � 0.5v0 (see
Fig. 7.7), and thus our definition should be valid if the ensemble of the approach
speeds in the scattering also satisfies v3 � 0.5v0. It turns out that this is a good way
to define the geometrical cross-section for most purposes, but the cross-section must
be increased if very weak encounters are to be included. Therefore the geometrical
cross-section for the incoming body to meet the binary is

� = πb2
max = 4.7πa3a0. (8.3)

The semi-major axis is related to the asymptotic velocity at very large distance v∞
by

a3 = G M

v2∞
(8.4)

while the corresponding velocity v3 in the centre-of-mass system is

v3 = (m B/M)v∞. (8.5)
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(Es)0

(EB)0  → EB

Es

Figure 8.1 Scattering of a single body off a binary. The single body comes with
energy (Es)0 and interacts with the binary of energy (EB)0. As a result, one of
the bodies (not necessarily the incoming body) escapes with energy Es and leaves
behind a binary of energy EB .

Therefore

� = 4.7π
Gm2

B

v2
3 M

a0 = 4.7
m B

M

Gm B

a0

1

v2
3

πa2
0 ≡ νπa2

0 (8.6)

where ν is the focussing factor (really an augmented focussing factor, cf.
Chapter 6):

ν = 4.7
m B

M

(
v0

v3

)2

. (8.7)

Here the asymptotic approach speed v3 is normalised to the average original binary
speed v0:

v2
0 = Gm B

a0
. (8.8)

The factor ν tells how much bigger the effective interaction area is than the binary
area πa2

0 , including the effect of gravitational focussing. Note that this factor refers
to bodies arriving from a very large distance.

To obtain the second factor f (�), let us consider a binary of binding energy
|EB |0 meeting a third body of energy (Es)0. After the three-body interaction, there
remains a binary of binding energy |EB | and a third body escapes with energy Es .
The total energy of the system is E0 = EB + Es = (EB)0 + (Es)0. As a limiting
case, when Es ≤ 0 and nothing escapes, we have a capture (see Fig. 8.1).

There are basically two different situations to consider. (1) A resonance forms
and the three bodies are in a bound system for some time until one of them breaks
loose. It is justifiable to assume that during the resonance stage, the information
from the initial approach conditions has been lost, except for the total energy, total
angular momentum and the mass values. Then the theory of Section 7.1 can be used
to predict the breakup results. (2) One of the three bodies escapes immediately after
the close three-body encounter. Now the applicability of the preceding theory is not
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so obvious, and experience with numerical experiments has shown that the theory
is valid only with certain limits.

Let us then assume that the three-body interaction provides an efficient shuffle in
phase space and that the theory of Section 7.1 is applicable (Mikkola 1986, Heggie
and Sweatman 1991). Then from Eq. (7.13),

f (|EB |) = 3.5|E0|7/2|EB |−9/2, (8.9)

or, using �,

f (�) = 3.5(|E0|/|EB |0)7/2(1 + �)−9/2. (8.10)

The ratio |E0|/|EB |0 is easily calculated using Eqs. (7.4), (8.4) and (8.8) and its
value is (noting that |E0| = |EB |0 − |Es |0 and |Es |0 = Gmsm B/2a3)

1 − msm2
Bv2

∞
Mmambv

2
0

= 1 − v2.

Here v2 is defined by

v2 = msm2
B

Mmamb

v2
∞
v2

0

= ms M

mamb

v2
3

v2
0

. (8.11)

Its significance lies in the fact that v = 1 corresponds to zero total energy, and often
it is convenient to express the incoming velocity in this scale. In that case

dσ

d�
= � f (�) = 33(1 − v2)7/2 msm B

2mamb

1

v2
πa2

0(1 + �)−9/2. (8.12)

As we have pointed out above, our theory should be used only for v3 � 0.5v0 which
generally means v < 1.

However, Eq. (8.12) is not expected to be quite exact since we have used the
distribution in Eq. (7.26) with a single value of the power-law index n = 4.5. We
know in fact that n is a function of the total angular momentum L (Eq. (7.32)).
The escapers with large impact distances b typically come from systems with large
L requiring n � 4.5. This is because the angular momentum of the escaper Ls

dominates and mostly determines the value of L in escapes with large b. Therefore
we should use a weighted average distribution, averaged over the whole range of the
indices n in place of Eq. (8.10). The full calculation, however, is rather complicated
(Mikkola 1986).

To get an idea how the distributions with different values of n contribute to
produce the average distribution, let us consider just three such distributions. Let
one of them, with n = 4.5, represent low and intermediate L values, while two
others with n = 8.2 and 10.6 are made to represent the end of high L . With the
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Figure 8.2 This shows how the differential cross-section is built up from contribu-
tions of different L . The low L values (corresponding to n = 3 − 7) are represented
by an index n = 4.5 in Eq. (8.14) while the high values are represented by n = 8.2
(for the range 7–9.4, and with relative weight 60%) and n = 10.6 (for the range
9.4–11.8, also with 60% weight relative to the n = 4.5 distribution). When the
three distributions are added, they reproduce the experimental data from Heggie
and Hut (1993) fairly well.

general power law index n, the distributions have the form (Eqs. (7.26) and (8.10))

f (�) = (n − 1)(1 − v2)n−1(1 + �)−n. (8.13)

The experimental testing is conveniently carried out after transforming to a new
variable η = �/(1 + �). For positive � this has a range from 0 to 1. The corre-
sponding transformation of the differentials is dη = d�/(1 + �)2. On the y axis
we plot the quantity 4.7� f (�) = k(η). Not only does the multiplication of f (�)
by � make the plots more compact, but also the quantity k(η) has direct physi-
cal significance, as we will learn in Section 8.5. The factor 4.7 is our usual ‘4.7’,
indicating how distant are the encounters (i.e. pmax) being considered relative to
the binary semi-major axis. After the coordinate transformation, the function to be
confronted by experimental data is

k(η) = 4.7(n − 1)(1 − v2)n−1η(1 − η)n−3. (8.14)

In Fig. 8.2 experimental data points from Heggie and Hut (1993) are plotted and
compared with Eq. (8.14), using, in part, the distribution for n = 4.5, in part, for
n = 8.2 and 10.6. Even with the simple representation of the whole n range by only
three discrete values, a fair match with the data (except at the very small values
of η, η � 0.05) is achieved. The proper integral over all n obviously improves the
agreement. Also it is found that Eq. (8.14) works well up to v ≤ 0.5 (Mikkola
1986). The comparison in Fig. 8.2 has been carried out at v ≈ 0.1.
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It is obvious that the scattering at large distance from the binary, and thus with
large L , makes a significant modification to Eq. (8.12) at small values of �. It would
be useful to describe this modification analytically; this is done by introducing a
correction factor A(�) by which the right hand side of Eq. (8.12) is to be multiplied.
Again, a full calculation is too complicated to follow here, but the correct answer
arises by considering the weighted mean values of the distributions of Eq. (8.13)
at different n. Let us assume that rather than producing a distribution of �, the
scattering at angular momentum L always results in a fixed value of the energy
change 1 + �, which is equal to the weighted mean of the distribution:

〈1 + �〉 =
∫∞

1 (1 + �)(1 + �)−n d(1 + �)∫∞
1 (1 + �)−n d(1 + �)

.

This mean value is a function of n which in turn is a function of L , by Eq. (7.32).
The probability that the extrapolated orbit passes within the annulus of unit width

is proportional to the area of the annulus, i.e. to 2πb. Since at large impact distances
L ∝ b, the probability of a scattering event with a value L is proportional to L . We
leave it as an exercise (Problem 8.2) to show that for positive � and with the above
mentioned assumptions the probability for an energy change � is proportional to√

�−1 when � � 1. The latter is true at large b interactions.
We have thus concluded that a correction factor of the form

A(�) = 1

2

√
|�|−1 (8.15)

should be applied to the right hand side of Eq. (8.12). Here we have used |�| to
allow for negative values, and the factor 1/2 has been added.

As before, the comparison in the k(η)–η plot is carried out except that now k(η)
includes also the A(�) factor:

k(η) = �
dσ

d�

2mamb

msm B
v2 1

πa2
0

1

2

√
|�|−1 = 16(1 − v2)7/2√η(1 − η)2. (8.16)

This distribution is compared with experimental data (Heggie and Hut 1993) in
Fig. 8.3. Further justification for the correction factor is provided in Section 10.8
where we compare the energy transfer rate arising from Eq. (8.12) with experimental
data.

We now see more clearly the significance of the choice 7a as the maximum range
of interaction between a binary of semi-major axis a and a third body (Section 7.1).
It is good choice for the ‘common’ range of angular momenta, the range which is
usually met in three-body breakup situations. However, the scattering events are
strongly biased towards large L since it is more likely that the encounter is distant
and has large L rather than small L . Therefore the interaction range going up to
7a is adequate only for ‘strong’ scattering, i.e. for � ≥ 0.25. For weaker scattering



8.2 Capture 203

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

k(
et

a)

eta

Scattering cross-section

Figure 8.3 A comparison of experimental scattering cross-section data from
Heggie and Hut (1993) with Eq. (8.16), including the correction factor A(�)
arising from scattering with large angular momentum L .

the interaction range has to be increased, the result of which may be represented
by the correction factor A(�).

Fortunately, there is a practical upper limit as to how far one needs to go in
extending the interaction range. Figure 8.2 demonstrates that a little more than
doubling the interaction area, by adding other distributions to the ‘standard’ range
distribution, gives a fair representation of the numerical experiments in the k(η)–η

plot. The reason why very distant encounters do not significantly contribute to this
plot is that we are looking at the quantity k(η) which is the product of the differen-
tial cross-section dσ/d� and �. While the former includes a

√
1/|�| factor which

would take the differential cross-section to ∞ when � → 0, the latter factor coun-
teracts to bring k(η) to zero at the same limit. It is the energy transfer rate involved
in the scattering event, represented by k(η), which is usually more significant than
the probability of the event itself.

In three-body scattering the range of the strong interaction also depends on the
mass of the incoming body as we will learn in the next chapter. In Section 10.7
we will find out that the interaction range (called stability boundary) scales as
(ms/m B)1/3, and the interaction area scales as (ms/m B)2/3. When ms/m B ≥ 1, the
right hand side of Eq. (8.12) should be multiplied by this factor (Hills 1992).

8.2 Capture

In case of capture, a third body coming with initial velocity v loses much of its
kinetic energy (Es)0 to the binary and becomes bound to it. Correspondingly,
the binary energy EB increases upwards toward zero. Let us study this increase
with the help of the distribution in (8.9). The presentation is made a little simpler
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Figure 8.4 An illustration of the distribution f (z) of inverse binding energies
z = |E0|/|EB | for the power-law index n = 4. Before the three-body interaction
z = z0, and the three-body encounter brings z to the capture zone [1, 1 + dz], as
indicated by the arrow (1). An equivalent transition is shown by arrow (2) which
takes z from the interval [z0 − dz, z0] to z = 1. The relative number of states within
the latter interval is 3z2

0dz = 3(1 − v2)2dz which gives the capture probability for
n = 4.

if the variable is changed to

z = |E0|/|EB | (8.17)

whereby the distribution using the general power-law index n becomes:

f (z) = (n − 1)zn−2. (8.18)

Let us study how the various states of the three-body system are represented by the
new variable z.

Since

z = |E0|/|EB | = (|EB | − Es)/|EB | = 1 − Es/|EB |, (8.19)

taking z > 1 signifies that we are extending the range of Es to negative numbers.
The negative energy of the third body means that it is in a bound elliptical orbit
relative to the binary, and |Es | represents its binding energy. The range of |Es | is
limited by the requirement that the major axis of the third body has to be much
greater than the major axis of the binary in order that we can apply the theory of
Section 7.1 and Eq. (8.9). This consideration leads us to state that |Es |/|EB | should
not be greater than, say, 0.25 (Problem 8.3). Thus, the condition for a capture is
that a binary with the initial value z0 moves in energy space to the region between
z = 1 and z = 1 + dz, where dz is typically 0.25 (see Fig. 8.4).
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Let us now consider what is the probability that a binary specified by the z
value z0 before the capture ends up in the interval (1, 1 + dz) after the capture.
Experience with numerical experiments in the three-body problem has shown that
what is of primary importance is the magnitude of the relative energy change
�|EB |/|EB | ≡ �z/z, not the initial and final states. In other words, the relative
jump �z/z0 = [1 − (z0 − dz)]/z0 = [(1 + dz) − z0]/z0 between the lower limits
of the two equally wide z-strips in Fig. 8.4 is about equally likely as the relative
jump between the upper limits of these strips �z/z0 = [(1 + dz) − z0]/z0, because
the two jumps are equal in magnitude. Therefore, for every jump in z from z0 to the
interval (1, 1 + dz) there exists an equivalent jump from the interval (z0 − dz, z0)
to 1. Assuming that the distribution of Eq. (8.18) is valid for the pre-encounter
binaries which are able to capture a third body, then the relative area in the strip
(z0 − dz, z0) gives us the probability for this jump P(z0 → 1):

P(z0 → 1) = (n − 1)zn−2
0 dz.

As

z0 = 1 − v2 (8.20)

by the definition of v, the capture probability is

P(z0 → 1) = (n − 1)(1 − v2)n−2 dz. (8.21)

With the value dz = 0.25

P(z0 → 1) = 0.25(n − 1)(1 − v2)n−2. (8.22)

After multiplication by the geometrical cross-section �, the capture cross-section
can be written as:

σcap = 2.35(n − 1)(1 − v2)n−2 msm B

2mamb

1

v2
πa2

0 . (8.23)

At low incoming velocities we may put 1 − v2 = 1. The value of n depends on
the total angular momentum; in typical experiments (Hut and Bahcall 1983, Hut
1993) L ≈ 0.3 at low values of v, but it decreases towards L = 0 when v → 1. We
can understand this behaviour of L = L0/Lmax since Lmax ∝ |E0|−1 and |E0| → 0
when v → 1. Therefore we expect n = 4.5 at v → 0 and n = 3 at v → 1. Equation
(8.22) gives us the capture probability around 0.9 at low incoming velocity, and
0.5(1 − v2) at high velocity.

A similar comparison can be made with the capture cross-sections. Then it is
convenient to plot the normalised capture cross-section 4.7σcap/� which is shown
in Fig. 8.5. Note that in this scale the value 4.7 would mean 100% capture rate. A
satisfactory agreement between theory and experiments is seen.
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Figure 8.5 Capture cross-sections from the numerical experiments of Hut (1993)
for the initial eccentricity e = 0.7, normalized so that σcap is divided by
πa2

0msm B/(mambv
2). The corresponding data points for e = 0, which are not

shown, are a factor of 1.7 below these, indicating that the ‘effective’ cross-sectional
area of the binary is greater for higher e. In the experiments the median angular
momentum varies from L = 0 at v = 1 to about L = 0.3 at v = 0. The two theo-
retical curves, drawn to correspond to these L values, match the data at either end
of the v-range.

We should note that the capture probability depends on the geometrical cross-
section � which we are using. If we take the interaction radius to be much greater
than 7, the number of captures will not significantly increase. The three-body scat-
tering from large impact distances is mainly of the flyby type, and therefore the
increase in � will increase the relative proportion of flybys and decrease the prob-
ability of capture. The probability of capture is a significant number only as long as
one specifies the impact distance range of interest. Numerical experiments (Saslaw
et al. 1974, Hills 1992) show that generally the capture probability decreases with
the increasing semi-latus rectum p3 of the third-body orbit, but that it is also quite
sensitive to other parameters, such as the mass of the incoming body.

In contrast, the capture cross-section σcap is a stable quantity as soon as �

is large enough. Three-body scattering at large distances does not make further
contributions to the total number of captures and thus σcap remains unchanged. For
this reason, it is generally better to use the capture cross-section rather than capture
probability.

In the above derivation of Eq. (8.23) it was assumed that the relative number of
pre-encounter binaries with different values of z can be obtained from Eq. (8.18).
This is not a trivial assumption. Why should one value of z (or one value of the
semi-major axis of the binary) be better for the capture than some other value, and
in such a way that Eq. (8.18) is followed? Remember that this distribution was
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derived for the binaries after an escape, and after all, capture is quite different from
escape.

A partial resolution of this problem comes from the time-reversibility of three-
body orbits. For every escape orbit, there is a corresponding time-reversed capture
orbit. For every binary with the inverse energy z after an escape, there is another
binary with the same inverse energy z which is capable of a capture. This suggests
a detailed balance between emission (escape) and absorption (capture) of bodies
by binaries. Using the detailed balance principle, one can understand why the after-
escape distribution of z can also be used to describe the pre-capture distribution
of z.

However, we should point out that the principle of detailed balance involves more
than just noting the obvious time-reversibility of orbits. The time reversals prove
that for a sample of escape orbits, with a definite distribution of escape velocities vs

(see Fig. 7.7), there exists a corresponding sample of capture orbits, starting from
the same distribution of approach velocities v3. Then it is quite clear that binary
energies should also be distributed exactly in the same way in the two processes.
However, in the derivation of Eq. (8.23) we were discussing samples with a single
value of v3. The fact that the binary energy distributions are still equivalent between
escape and capture even after this breach of symmetry constitutes a further step
which we take knowing that it leads to a good description of numerical experiments.
The principle of detailed balance has been used as a starting point of an alternative
derivation of the binary energy distributions, thus proving its generality and utility
(Heggie 1975).

8.3 Ejections and lifetime

When a resonance has formed through a capture, or otherwise, we may ask how
long it survives before one of the bodies escapes. We call this period the lifetime
of the bound system. Numerical orbit calculations have shown that a three-body
system evolves via numerous close triple encounters between which one of the
bodies recedes to some distance from the binary and then returns.

These excursions are called ejections. Thus typically the three-body evolution
consists of interplay when the three bodies orbit each other in a relatively small
volume, interspersed by ejections until one of the departures happens fast enough
to become an escape. The time spent in the interplay mode is typically about one
half of the time spent in ejections (Anosova and Orlov 1986). The exact timeshare
between the two modes depends strongly on the definition of the borderline between
the two modes, i.e. on how far from the binary the third body is allowed to recede
before the interplay status is lost. Here we use the definition that the third body
should not go further than rs = 10r during the interplay phase where r is the binary
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separation (see Fig. 7.2). In the following, the time spent in ejections will be counted
and in the end a 50% correction will be applied to account for the interplay time.

In some ways ejections resemble escape; during an ejection the system is clearly
divided in two parts, a binary and a third body which initially recedes from the
binary and then turns around and returns. The theory of Section 7.1 could be used
to describe the receding phase of motion, when the distance rs satisfies a < rs < R
where R is the upper limit of integration in Eq. (7.6). Obviously the turnaround
distance has to be much greater than R.

The approach taken here is to assume that the probability for obtaining a certain
escape energy Es is as derived previously, and that the corresponding binary energy
distribution is given by Eq. (7.13). However, for an escape to occur, Es > (Es)exc,
where the excess energy (Es)exc is required to overcome the potential ‘barrier’
arising from the potential energy in the gravitational field of the binary. If the
excess energy is not available, the third body ‘bounces back’ from the ‘barrier’, and
an ejection takes place.

How big a barrier should be considered? The orbit of the third body relative to
the binary should be extensive enough to satisfy our specification of near escape.
The semi-major axis of this orbit should be a3 � a. To fix our attention to a specific
number, let us say that a3 > 10a.

The range 10a < a3 < ∞ implies an attempted escape, i.e. an escape followed
immediately by a capture. Therefore, our result from Section 8.2 can be used, which
tells us that the width of the capture zone (i.e. the ‘barrier’) is dz = 0.25 in the distri-
bution of Eq. (8.18). The connection between the choice a3 = 10a and dz = 0.25 is
as follows. By definition (Eq. (7.4)) a3/a = [(m Bms)/(mamb)](|EB |/|Es |), and by
Eq. (8.19) dz = z − 1 = |Es |/|EB |. Thus dz = [(m Bms)/(mamb)](a/a3). Putting
a/a3 = 0.1 and equal masses gives dz = 0.2; considering unequal but comparable
masses one may choose dz = 0.25. The probability of ejection is then the relative
area of the capture zone [1, 1 + dz] (see Fig. 8.4):

Pej = (1 + dz)n−1 − 1

(1 + dz)n−1
= 1 − 0.8n−1. (8.24)

One observes that the ejection probability is expected to range from Pej = 0.36
when the angular momentum L0 = 0 (n = 3), to Pej ≈ 0.75 when L0 = 0.5Lmax

(n = 7.5). Numerical experiments (Valtonen 1975a) carried out in the middle range
of angular momenta, L0 ≈ 0.33Lmax, give the ejection rate Pej = 0.5 − 0.6, as
expected. As the alternative to ejection is escape, the escape probability is 1 − Pej

per one strong three-body encounter and it shows a similar variation with angular
momentum.

Let us suppose that the escape takes place at the N th attempt. The probability that
the N − 1 previous attempts produced an ejection is P (N−1)

ej , and the probability
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that the last one was an escape has the probability 1 − Pej; thus altogether the
probability that the N th three-body encounter produced an escape is (1 − Pej)P N−1

ej .
The probability that even after N encounters there is no escape is P N

ej , and this is
also the probability that the lifetime of the bound three-body system exceeds N 〈T 〉
where 〈T 〉 is the average length of time which the system spends in one single
ejection.

Let us now estimate 〈T 〉 in order to calculate system lifetimes. The orbital period
of an ejection orbit is

Torb = 2π

√
a3

3/G M

≥ 2π103/2G[(mamb)3/M]1/2(2|E0|)−3/2,
(8.25)

where use was made of Eq. (7.4), the inequality a3 > 10a, as well as the fact
that in ejections, EB ≈ E0. It is convenient to measure the lifetime in terms of
the crossing time Tcr of the system. The crossing time is the time during which
a body with typical speed 〈V 〉 crosses through a system of dimension 〈R〉, i.e.
Tcr = 〈R〉 / 〈V 〉. If the mass of the system is M and the energy of the system is |E0|,
in equilibrium we have the approximate relations 2|E0| = M 〈V 〉2 = G M2/ 〈R〉.
From here 〈R〉 / 〈V 〉 = G M2/(2|E0|)[M/(2|E0|)]1/2 , so that

Tcr = G M5/2(2|E0|)−3/2. (8.26)

We may now normalise the orbital period Torb to the crossing time:

Torb/Tcr ≥ 2π103/2
(√

mamb/M
)3

(8.27)

or Torb/Tcr ≥ 7.36 for equal masses. Therefore the range of Torb in units of Tcr

goes from ∼ 10 to ∞. If we take z from the lower part of the capture zone,
e.g. z = 1 + 0.25/3, the corresponding value of Torb/Tcr is 3.5 times greater
than the minimum value 7.36 (Problem 8.4), and using this value one can see
that typically Torb ≈ 26Tcr, in agreement with numerical experiments (Szebehely
1972).

The distribution of lifetimes T which follows from the process of repeated escape
trials, with a given escape probability per trial, is exponential

f (T ) = 0.69e−0.69T/T1/2 . (8.28)

Here the half-life T1/2 of the system is the point in time when the probability that the
system remains intact is 50%. Let this happen after N orbital cycles, each of which
lasts 26Tcr. Then N is solved from the equation P N

ej = 0.5, i.e. N = 0.3/ log(1/Pej),

and using this value of N , the half-life can be written T1/2 = 7.8/ log(P−1
ej )Tcr.

As was noted previously, the probability of escape also depends on the mass
of the escaper. Systems with a large range of masses break up faster because they
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Figure 8.6 The distributions of lifetimes T , in units of the crossing time Tcr, for
a system with equal masses and the average angular momentum L = 0.2 (Saslaw
et al. 1974). A theoretical curve of the form f (T ) = 0.69e−0.69T/T1/2 fits the data
well when T1/2 = 35.

contain at least one body which has a low fraction of the total mass and which
consequently has a high probability of escape. The half-life should be inversely
proportional to Ps in Eq. (7.23):

T1/2 ∝ P−1
s = 1 + m2

s (m−2
a + m−2

b ). (8.29)

How the mass values are divided between different bodies varies from system to
system, but a fairly typical situation occurs if ms is the smallest mass and the rest
of the mass is equally divided between the other two: ma = mb. Let us call the
range of masses m = (1 − ms)/(2ms) in this case. Then T1/2 is 1

3 (1 + 2/m2) times
the half-life for equal masses. In addition, there is the factor 1.5 which adds the
interplay time to the ejection time to make the total lifetime of a three-body system.
Putting all the factors together,

T1/2 = 3.9(1 + 2/m2)/ log(P−1
ej )Tcr (8.30)

where Pej is given by Eqs. (7.32) and (8.24). When going from low to high angular
momentum, T1/2 is expected to range from 27Tcr to over 60Tcr for equal masses,
and from 11Tcr to over 24Tcr for the mass ratio m = 3. Numerical experiments
have confirmed the exponential decay of bound three-body systems and the half-
life dependence described above (see Figs. 8.6 and 8.7; Anosova 1969, Szebehely
1972, Saslaw et al. 1974, Valtonen and Aarseth 1977, Anosova and Polozhentsev
1978, Agekyan et al. 1983, Anosova and Orlov 1983, 1986, 1994, Anosova et al.
1984).
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Figure 8.7 The half-life T1/2 as a function of the maximum mass range m of the
three bodies. The data points come from Valtonen (1974), Anosova and Polozhent-
sev (1978), Anosova and Orlov (1986), and the theoretical lines follow Eq. (8.30)
with different values of Pej. The latter are derived using Eqs. (7.32) and (8.24)
for L = 0 and L = 0.35. It is apparent that Eq. (8.30) is applicable only for
m < 3.

8.4 Exchange and flyby

Often the impact of the incoming body on the binary is immediately followed by
an escape. If the incoming body escapes, we call the process a flyby. The single
body flies by the binary with a certain amount of change of its direction as well as
speed. Correspondingly, the binary binding energy changes.

If, on the other hand, the escaped body is one of the former binary members, we
call the event an exchange. Then one binary member is replaced by the incoming
body, i.e. we have an exchange of bodies between the two systems. (More exactly,
we are talking about prompt exchange, see Section 8.1.) Naturally also the binary
energy changes in the process.

The exchange probability is a product of two factors. First, there is the probability
that capture has not taken place. According to Section 8.2, this probability is about
11% at low values of v. The second factor is the probability 1 − Ps that the escaper
is not the incoming body, of mass ms , but rather one of the original binary members.
Therefore the differential cross-section for the relative energy change is given by
Eq. (8.12) multiplied by these two factors:

dσex

d�
= 3.6(1 − Ps)(1 − v2)7/2 msm B

2mamb

(
1

v

)2

πa2
0(1 + �)−9/2. (8.31)

For equal mass systems Ps = 1/3 and the coefficient 3.6(1 − Ps) is about 2.4 which
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Figure 8.8 The normalized cross-section dσ/d� for exchange scattering as a func-
tion of �. The experimental points come from Hut (1984), and the theoretical curve
follows Eq. (8.31) with Ps = 1/3.

is not very far from the value given by numerical experiments for � ≥ 0 (Fig. 8.8;
Hut 1984, Heggie and Hut 1993).

The total cross-section for exchange σex is obtained from Eq. (8.31) by integration
over �. The lower limit of integration is � = −v2 (Problem 8.5), the upper limit
is ∞. The integration gives (Ps = 1/3)

σex = 0.7
msm B

2mamb

1

v2
πa2

0 . (8.32)

This agrees very well with numerical experiments. (These are called ‘direct
exchange’ or prompt exchange in Hut (1993); ‘resonance exchange’ gives a co-
efficient 3.5 in Eq. (8.32). The latter represent about 43% of all captures.) Note that
σex does not contain the (1 − v2) factors. The power 7/2 of this factor in Eq. (8.31)
is cancelled after inserting the lower limit to the integral. Therefore the exchange
cross-section is rather independent of v for v ≤ 0.5, except for the v−2 factor arising
from focussing.

The cross-section for flybys is then what is left over from the total geometrical
cross-section

� = 9.4
msm B

2mamb

1

v2
πa2

0 (8.33)

after the capture cross-section and the exchange cross-section are deducted
from it. One must remember that the flyby cross-section is a function of pmax:
when pmax is increased, the flybys dominate more and more. Thus the flyby
cross-section only has meaning when the maximum interaction radius has been



8.4 Exchange and flyby 213

-2

-1

0

1

-2 -1 0 1 2

lo
g(

si
gm

a)
: e

xp
er

im
en

ts

log(sigma): theory

Exchange cross-section

Figure 8.9 A comparison of the theoretical exchange cross-section of Eq. (8.32)
(multiplied by the correction factors for unequal masses) with experimental data
from Heggie et al. (1996). There is generally good agreement (points close to
the dashed line), but also a few major disagreements. The latter are not a sur-
prise since simplifying assumptions were made in the derivation of the correction
factors.

specified. On the contrary, exchanges are obtained primarily inside the pmax =
4.7a0 radius, and thus the exchange cross-section is well defined at sufficiently
large pmax.

It is desirable to know which one of the two original binary components escapes in
an exchange interaction. This can be found by going back to the phase space volume
σ in Eq. (7.22), and by noting that σ ∝ m9/2

B when we substitute mamb = Mm B .
Thus the probability of escape for a body of mass m1 should be proportional to
(m2 + ms)9/2 where m2 and ms are the masses of the new binary members after
the exchange. Normalising the binary mass to the total mass M gives us the escape
probability factor 3.1(1 − m1/M)9/2. This factor is 0.5 for equal masses as it should
be since then m1 and m2 have equal probability for escape. Thus the factor can be
used as a multiplier in Eq. (8.32) where the numerical coefficient is based on
numerical experiments with equal masses.

Sometimes it is convenient to normalise the cross-section so that the initial binary
mass ma + mb = 1. Now M is not a constant, and we have to take note of the M
dependence (normalised to the initial binary mass) [M/(ma + mb)]1/2 in the phase
space volume of Eq. (7.22). As a result Eq. (8.32) is then further multiplied by
0.81[1 + ms/(ma + mb)]1/2. This quantity is unity for equal masses, and thus it is
a suitable correction factor between equal mass and unequal mass cross-sections.
Experimental data on the mass dependence of the exchange cross-sections supports
the use of the above mass factors (see Fig. 8.9; Heggie et al. 1996).



214 Scattering and capture in the general problem

Binary - Single star encounters

Σ

nv3

v3

Figure 8.10 A binary passes through a field of single stars (number density n)
with speed v3. The effective interaction cross-section is �. The volume sampled
by the binary in one time unit is �v3, and the number of single stars encountered
is �v3n.

8.5 Rates of change of the binding energy

The cross-sections derived in previous sections are useful in many applications.
They are needed especially in the study of the dynamical evolution of stellar systems,
such as star clusters (Heggie 1975). Star clusters are composed both of single stars
and binary stars, as well as temporary multiple star subsystems, and the interaction
between binaries and single stars has been identified as a major influence on the
evolution of the structure of the cluster. Clusters may either collapse or expand which
means that the overall cluster potential is changing. Quite often the binaries in the
cluster provide the source of energy which is required for the overall adjustment of
the cluster. Therefore we will now study briefly what happens to a binary when it
interacts with the single stars of the cluster.

Consider single stars of space density n (stars/pc3) flowing past the binary at
speed v3. The number of encounters between the binary and the single stars per
unit time is nv3� (Fig. 8.10). The encounters occur at the rate

R =
∫

nv3
dσ

d�
d�

=
∫

33(1 − v2)3.5πa2
0

msm B

2mamb

nv3

v2
(1 + �)−9/2 d� (8.34)

= 7.4G2m3
B

1
2Mv2

0

M
M

n

v3
.

The rate R has been obtained using Eqs. (8.8), (8.11) and (8.12). For the cross-
section � we have used

∫
dσ , and the integration is to be carried out over the whole

range of � from −v2 to ∞.
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At each encounter, a relative amount of energy � is lost or gained by the binary.
The rate of energy transfer is then

R� =
∫

nv3�
dσ

d�
d�

= 3G2m3
B

1/2Mv2
0

M
M

(1 − 3.5v2)
n

v3
.

(8.35)

Here we have made use of the integral∫
x dx

(1 + x)4.5
= − 2

35

2 + 7x

(1 + x)3.5
. (8.36)

The average amount of energy transferred per encounter is

〈�〉 = R�/R = 0.4(1 − 3.5v2). (8.37)

Since Eq. (8.12) does not put enough weight on the small values of �, it is
expected that the above 〈�〉 is an overestimate. The correct value is about a factor
of two smaller (Heggie and Hut 2003; see Problem 8.6), as one might guess by
looking at Fig. 8.2.

Equation (8.37) implies that the average energy change 〈�〉 is independent of the
masses of the three bodies. This cannot be quite correct. Our theory was based on the
reversibility between escape and capture orbits, which seems to work well for nearly
equal masses. However, the scattering of a heavy third body from a light binary has
no corresponding escape orbit since the probability of such an escape is practically
zero (Eq. (7.23)). At the other end of the scale, the probability for the escape of
a very small body is 100% while its capture cannot be so efficient. Numerical
experiments (Hills 1992) show that the theory may be rectified by multiplying the
right hand side of Eq. (8.37) by (2m3/m B)1/2. The data points from Hills (1984)
are shown in Fig. 10.14 where a more complete discussion of 〈�〉 as a function of
the closest approach distance q follows.

It is important to notice that 〈�〉 is positive for all values v ∼< 0.5. When the
binary binding energy clearly exceeds the energy of the incoming body, we say
that the binary is hard (Chapter 6). This is true when v ∼< 0.5. Therefore we may
state that the binding energy of the binary increases on average, i.e. hard binaries
become harder (Aarseth and Hills 1972, Hills 1975, Heggie 1975, Gould 1991).
In case of very unequal masses a more exact condition for the hardening of bina-
ries is v�v0, i.e. the approach speed of the third body at large distances should
be below the average binary speed (Hills 1990). This has the important conse-
quence that hard binaries in the cluster act as sources of energy. When the binary
binding energy increases, i.e. when its energy becomes more negative, it throws
out single stars with velocities higher than they came by, and subsequently the
star cluster is heated. The heating leads to an expansion, and in case of smaller
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clusters, to their dispersal. A tidally limited cluster contracts, however, as mass is
lost.

8.6 Collisions

During the chaotic phase of three-body evolution, two of the three bodies sometimes
approach very close to each other. At this time, their speeds increase to values which
are much higher than the average speed. In astrophysical systems, the bodies have
finite sizes which means that in close approaches the two bodies may collide.
Speed cannot exceed the speed of light in the real physical world. Much before
that happens, the dynamics require modifications and Newtonian gravity no longer
applies.

It is possible to estimate the frequency of close approaches by assuming that the
system evolves through a succession of ejections until an escape takes place. At
each ejection a temporary binary is formed which has close two-body encounters
at the pericentre of the orbit. The pericentre distance is q = a(1 − e). While the
semi-major axis of the temporary binary does not vary greatly from one ejection to
the next, the eccentricity varies a lot, over the whole range given by the distribution
of Eq. (7.14).

The probability that the eccentricity is greater than e is 1 − e2, and since 1 − e2 =
(1 − e)(1 + e) = (q/a) (1 + e), at high values of e (e ≈ 1), this probability becomes
approximately equal to 2q/a. This is the probability of close approach within
distance q per ejection. During its evolution the system goes through a number
of ejections, some of short duration and others of longer duration. For the present
calculation, all ejections are of equal importance; even the very brief ones count
for they produce temporary binaries with possibly close two-body encounters. In
typical interplay phase, there is an ejection of one kind or another per crossing
time and, related to it, there are on average two close approaches (Szebehely and
Peters 1967). Occasional long-lasting ejections decrease the average number of
ejections per crossing time somewhat but the number of close approaches is rather
constant at two per crossing time. Typically, a three-body system lives through
about 30 crossing times (see Section 8.3) which implies something like 60 close
encounters. Assuming that Eq. (7.14) can be used to estimate the closeness of these
approaches, then for very small values of q/a the probability of approach closer
than q is approximately 120q/a.

The approach distance q is normalised to the temporary semi-major axis a. Then
it is necessary to estimate how large a is relative to some standard measure like
a0 which is the semi-major axis of the (temporary) binary before the strong three-
body interaction begins. Typically a ≈ (1/2)a0, similar to the semi-major axis of
the binary after an escape. Therefore the probability that the approach is closer than
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Figure 8.11 The probability f (q) as a function of q in three-dimensional systems
(L = 0.74 and 0.14) and in planar systems (L = 0.9 and 0.15). The experiments
come from Saslaw et al. (1974) and the straight lines are the expected relations at
low q . The latter is in units of a0, the semi-major axis of the initial binary.

q is:

f (q) ≈ 240 C(L)q/a0. (8.38)

The angular momentum dependence has been introduced through the factor C(L).
This factor is needed since the system lifetime depends on L (see Fig. 8.7). The
functional form T1/2(L) is rather complex as we see by combining Eqs. (7.32),
(8.24) and (8.30). It may be described more simply by (Saslaw et al. 1974)

C(L) ≈ 1 + 7.5L2. (8.39)

If the diameters of the bodies in question are q, then the collision probability
becomes Pcoll = f (q).

When the system is two-dimensional the eccentricity distribution peaks strongly
at e ≈ 1 due to the (1 − e2)−1/2 factor in Eq. (7.17). For a typical value q/a =
1/500, 1 − e2 = 1/250 and (1 − e2)−1/2 ≈ 15. Thus the probability of close en-
counters is increased by about this factor in two-dimensional systems. Figure 8.11
illustrates how these results agree with numerical experiments.

The above theory may also be extended to scattering where we define the cross-
section σ (q) as the impact area which leads to the closest two-body encounter to
be less than q. It consists of two parts: the geometrical cross-section for the third
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body to meet head-on the binary � = νπa2
0 (Eq. (8.6)), where ν is the focussing

factor, and the probability f (q) that there is an approach closer than q (Eq. (8.38)).
If only more or less head-on collisions are considered, we may (rather arbitrarily)
put C(L) = 1, and pmax = 1

2a0. Then Eq. (8.7) becomes

ν = 1

2

m B

M

(
v0

v3

)2

= m Bms

2mamb

1

v2
. (8.40)

Altogether

σ (q) ≈ 240
q

a0

m Bms

2mamb

πa2
0

v2
. (8.41)

The theory and experiments agree well at small values of q/a0, q/a0 ∼< 10−3, but at
large values of q/a0 the theoretical cross-section is too large (Hut and Inagaki 1985).
The large q/a0 regime has a major contribution of flybys and exchanges which
possess essentially one close encounter instead of the typical 60 close encounters
following a capture. Therefore the cross-section is lowered by a factor which is
somewhere between 1 and 1/60 and which decreases with increasing q/a0.

The overall effect is to change the slope and the coefficient in Eq. (8.41). Nu-
merical experiments (Sigurdsson and Phinney 1993) suggest

σ (q) = 40

(
q

a0

)0.75 m Bms

2mamb

πa2
0

v2
,

q

a0
≤ 0.0137,

σ (q) = 8.1

(
q

a0

)0.375 m Bms

2mamb

πa2
0

v2
,

q

a0
> 0.0137.

(8.42)

This applies over a wide range of mass ratios ms/m B and incoming velocities v

(Hills 1991, Sigurdsson and Phinney 1993). In Fig. 8.12, σ (q) is represented by the
two lines, and they are seen to provide a good fit to the data.

The relative speed at the close two-body encounter is of prime interest in cases
of neutron stars and black holes. A ‘speed limit’ vmax may be set which should
not be exceeded in order that our Newtonian calculation is valid. Setting aside the
concern about the proper value for vmax, one can simply proceed to calculate the
probability that vmax is not exceeded in different types of systems. This probability
is 1 − Pcoll when we take vmax to be the pericentre velocity:

vmax
2 = G(ma + mb)

q
(1 + e) (8.43)

where 1 + e ≈ 2 at the limit of high eccentricities. The maximum speed may be
compared with the circular speed (Eq. (8.8)):

v2
max

v2
0

= 2
a0

q
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Figure 8.12 The normalised cross-section for scattering experiments (equal
masses and zero eccentricity binary), which lead to a close two-body encounter
below the value q . Experiments are from Sigurdsson and Phinney (1993) and the
straight lines are from Eq. (8.41).

or

2q

a0
= 4

(
v0

vmax

)2

. (8.44)

Therefore the probability that the speed remains below vmax is

Pvmax = 1 − 480C(L)(v2
0/v

2
max). (8.45)

Problems

Problem 8.1 Show that for an escaper with a typical escape velocity vs = 0.28 and
escaper mass ms = 0.2 (figure 7.7), the maximum semi-latus rectum pmax ≈ 4.7 if
the maximum semi-minor axis bmax = 7. Use units where M = G = a0 = 1.

Problem 8.2 Show that the probability for energy change �, for values 0 < � �
1, should include a factor of form A(�) ∝

√
�−1, using the weighted average

〈1 + �〉 as 1 + �, and Eq. (7.32).
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Problem 8.3 Suppose that the three bodies have equal masses, that (Es)0 =
0.07|EB |0, and that a capture has taken place. Let the relative energy change of
the binary be � = 0.85(|E0|/|EB |0) − 1. What is the new binary binding energy
|EB | and the new third-body energy Es as a function of |E0|? When |Es | is inter-
preted as the new orbital binding energy of the third body relative to the binary, what
is the ratio of the semi-major axes of the third-body orbit and the new binary orbit,
(a3)new/anew? Consider also a more typical case of ms = 0.2 and ma = mb = 0.4.
How big is the jump in the z-axis?

Problem 8.4 Let us assume that an ejection orbit is in the lower part of the capture
zone [1, 1 + dz], z = 1 + 0.25/3. Calculate the orbital period of this orbit in terms
of crossing time Tcr and for equal masses.

Problem 8.5 Show that the smallest possible value of � in three-body scattering
is −v2.

Problem 8.6 Calculate 〈�〉 for the distribution of Eq. (8.13) when n = 11.5 which
corresponds to scattering with a large angular momentum. How does this compare
with 〈�〉 for low angular momentum (n = 4.5)? Hint:∫

x dx

(1 + x)11.5
= − 1

19

(
4

21
+ 46

21
x + 2x2

)
(1 + x)−11.5. (8.46)
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Perturbations in hierarchical systems

Complete analytical solutions are not available for systems with more than two
bodies. However, it is possible to describe three-body orbits by approximate meth-
ods when the system is hierarchical, i.e. if there is a clearly defined binary and a
third body which stays separate from the binary. These methods may be validated
by comparison with numerical orbit integrations. Then we may take exact two-body
orbits as a first approximation, and the effects of other bodies and other disturbances
are taken into account as small forces which make the true trajectory deviate from
this reference orbit.

When analysing perturbations we have to make some approximations that depend
on the form of the perturbing force. Thus perturbation theory is a collection of
various methods applicable in different situations rather than a single theory. In this
chapter we will study a classical method that applies to the usual orbital elements.
Another method will be discussed in the next chapter.

The problem which we consider by using this method is the long term evo-
lution of a binary orbit when it is perturbed by a distant companion. This ap-
plies especially to triple stars and to the stability of planetary orbits around binary
members.

9.1 Osculating elements

Consider the motion of a planet in a heliocentric xyz-frame. At the moment t = t0
the planet is at (x0, y0, z0). We can determine the reference ellipse E0 by select-
ing the orbital elements in such a way that the ellipse goes through the point
(x0, y0, z0). In order to fix all six elements we also require that the velocity on
the reference ellipse at (x0, y0, z0) is the same as the actual velocity of the planet
(Fig. 9.1). The elements of such an ellipse E0 are called osculating elements. They

221
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(x0, y0, z0)E0

E1

Figure 9.1 Even if the actual orbit is not elliptic, the motion at a given time can
be described by the osculating (‘kissing’) ellipse that fits the true orbit as well as
possible.

describe the orbit which the planet would follow if the perturbing force suddenly
disappeared at t0. At some later time the planet will not be in this orbit; then its mo-
tion can be described by some other ellipse E1 with different osculating elements
than E0.

Due to perturbations the orbital elements are no longer constant but change with
time. The same is true also for other integrals of the equations of motion. Our task
is now to find expressions for the rate of change of the elements.

9.2 Lagrangian planetary equations

We begin by studying a set of equations that is very widely used. They can be derived
from Newtonian mechanics with rather elementary methods, but the calculations
are then prohibitively long. Using the more powerful Hamiltonian formalism the
derivation becomes quite simple.

We include a small perturbing term R, usually called the perturbing function, in
the Hamiltonian:

H = − µ2

2L2
− R. (9.1)

Then we find the time derivatives of Delaunay’s elements. We assume that all
elements appearing in their expressions can change with time:
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L̇ = d

dt

√
µa = 1

2

√
µ

a
ȧ,

Ġ = d

dt

√
µa(1 − e2) = 1

2

√
µ(1 − e2)

a
ȧ −

√
µae√

1 − e2
ė,

Ḣ = d

dt

√
µa(1 − e2) cos ι

= 1

2

√
µ(1 − e2)

a
cos ι ȧ −

√
µae√

1 − e2
cos ι ė −

√
µa(1 − e2) sin ι ι̇,

l̇ = Ṁ,

ġ = ω̇,

ḣ = �̇.

(9.2)

As before, we use the symbol ι (iota) for inclination , while ι̇ marks its time deriva-
tive. The values on the left hand side of these equations are obtained from the
equations of motion:

L̇ = −∂H
∂l

= ∂ R

∂l
,

Ġ = −∂H
∂g

= ∂ R

∂g
,

Ḣ = −∂H
∂h

= ∂ R

∂h
,

l̇ = ∂H
∂L

= µ2

L3
− ∂ R

∂L
,

ġ = ∂H
∂G

= − ∂ R

∂G
,

ḣ = ∂H
∂H = − ∂ R

∂ H
.

(9.3)

The derivatives of the perturbing function must be expressed in terms of the ordinary
elements. The variables l, g and h are trivial, since they are the same as M , ω and �.
To find the three others we express a, e and ι as functions of Delaunay’s elements:

a = L2/µ,

e =
√

1 − G2/L2,

cos ι = H/G.

(9.4)
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Using these we can evaluate the required derivatives. Finally, we express Delaunay’s
elements in terms of the ordinary elements:

∂ R

∂L
= ∂ R

∂a

da

dL
+ ∂ R

∂e

de

dL
= ∂ R

∂a

2L

µ
+ ∂ R

∂e

G2/L3√
1 − G2/L2

= ∂ R

∂a
2
√

a

µ
+ ∂ R

∂e

1 − e2

e
√

µa
,

∂ R

∂G
= ∂ R

∂e

de

dG
+ ∂ R

∂ι

dι

dG
= ∂ R

∂e

−G/L2√
1 − G2/L2

+ ∂ R

∂ι

H

sin ιG2

= ∂ R

∂e

(
−

√
1 − e2

e
√

µa

)
+ ∂ R

∂ι

cos ι√
µa(1 − e2) sin ι

,

∂ R

∂ H
= ∂ R

∂ι

dι

dH
= ∂ R

∂ι

−1

G sin ι

= ∂ R

∂ι

−1√
µa(1 − e2) sin ι

.

(9.5)

Substituting these into Eq. (9.2) we get equations involving only ordinary elements:

1

2

√
µ

a
ȧ = ∂ R

∂ M
,

1

2

√
µ(1 − e2)

a
ȧ − e

√
µa

1 − e2
ė = ∂ R

∂ω
,

1

2

√
µ(1 − e2)

a
cos ι ȧ − e

√
µa

1 − e2
cos ι ė −

√
µa(1 − e2) sin ι ι̇ = ∂ R

∂�
,

Ṁ = µ

a
√

µa
− 2
√

a

µ

∂ R

∂a
− 1 − e2

e
√

µa

∂ R

∂e
,

ω̇ =
√

1 − e2

e
√

µa

∂ R

∂e
− cos ι√

µa(1 − e2) sin ι

∂ R

∂ι
,

�̇ = 1√
µa(1 − e2) sin ι

∂ R

∂ι
.

(9.6)
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From the first three equations we get

ȧ = 2
√

a

µ

∂ R

∂ M
,

ė = −
√

1 − e2

µa

1

e

∂ R

∂ω
+ 1 − e2

2ea
ȧ,

ι̇ = − 1√
µa(1 − e2) sin ι

∂ R

∂�
+ cos ι

2a sin ι
ȧ − e

1 − e2

cos ι

sin ι
ė,

which are easily solved for ȧ, ė and ι̇. We denote the mean motion by

n =
√

µ/a3, (9.7)

whence
√

µa = a2n,
√

µ/a = an.

The time derivatives of the orbital elements are now:

ȧ = 2

na

∂ R

∂ M
,

ė = −
√

1 − e2

na2e

∂ R

∂ω
+ 1 − e2

na2e

∂ R

∂ M
,

ι̇ = − 1

na2
√

1 − e2 sin ι

∂ R

∂�
+ cos ι

na2
√

1 − e2 sin ι

∂ R

∂ω
,

Ṁ = n − 2

na

∂ R

∂a
− 1 − e2

na2e

∂ R

∂e
,

ω̇ =
√

1 − e2

na2e

∂ R

∂e
− cos ι

na2
√

1 − e2 sin ι

∂ R

∂ι
,

�̇ = 1

na2
√

1 − e2 sin ι

∂ R

∂ι
.

(9.8)

These are called the Lagrangian planetary equations.
These equations are exact. In a first order theory we assume that the elements vary

only very slowly. Thus we can keep them constant when evaluating the expressions
of the time derivatives. To get a second order theory, the elements on the right
hand sides of the equations can then be expressed as functions of time. As can be
guessed, that will lead to rather laborious calculations.

9.3 Three-body perturbing function

Let us now consider the perturbing function in the hierarchical three-body problem.
The potential energy of the system is (Fig. 9.2)

V = −Gm1m2

r
− Gm1m3

r13
− Gm2m3

r23
(9.9)
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m1

m2

m3

r13

r23

C.M.

Ψr R3

Figure 9.2 A hierarchical three-body system is composed of bodies of masses m1,
m2 and m3, with mutual separations r , r13 and r23. The centre of mass (C.M.) of
the inner binary and the position vector of the third body R3 are also marked.

where r23 and r13 are the lengths of the vectors

r23 = R3 − m1

m1 + m2
r (9.10)

r13 = R3 + m2

m1 + m2
r .

In order to evaluate the last two terms in (9.9), we use (3.94), putting

r → R3

r ′ → m1

m1 + m2
r or r ′ → − m2

m1 + m2
r (9.11)

t = m1

m1 + m2

r

R3
or t = − m2

m1 + m2

r

R3
.

Consequently, to the second order,

V = − Gm1m2

r
− Gm1m3

R3

2∑
n=0

(
− m2

m1 + m2

)n ( r

R3

)n

Pn(cos ψ)

− Gm2m3

R3

2∑
n=0

(
m1

m1 + m2

)n ( r

R3

)n

Pn(cos ψ)

= − Gm1m2

r
− Gm3

R3

[
(m1 + m2)

+
(

− m1m2

m1 + m2
+ m1m2

m1 + m2

)
r

R3
cos ψ

+
(

m1m2
2

(m1 + m2)2
+ m2m2

1

(m1 + m2)2

)(
r

R3

)2 1

2
(3 cos2 ψ − 1)

]

= − Gm1m2

r
− Gm3(m1 + m2)

R3

− Gm1m2m3

2(m1 + m2)R3

(
r

R3

)2

(3 cos2 ψ − 1).
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We recognise the first two terms as the potentials of the two two-body motions,
the inner binary and the outer binary. The third term is the lowest order term in the
perturbing function:

R = Gm1m2m3

2(m1 + m2)R3

(
r

R3

)2

(3 cos2 ψ − 1). (9.12)

9.4 Doubly orbit-averaged perturbing function

In this section we calculate the time average of R, first integrating over one complete
cycle of the outer orbit, and then over one cycle of the inner orbit. For the first task,
we have to integrate

dVe = 3 cos2 ψ − 1

R3
3

dMe (9.13)

over the mean anomaly Me from 0 to 2π , and divide the result by 2π . The integration
is simplest to carry out using the true anomaly φe as the variable.

For that purpose we need the transformation between dM and dφ. As an inter-
mediate variable we use E and the expressions (Eq. (3.37)):

sin E =
√

1 − e2
sin φ

1 + e cos φ
,

cos E = cos φ + e

1 + e cos φ
,

and Kepler’s equation (3.41)

M = E − e sin E .

From Kepler’s equation we get

dM = (1 − e cos E) dE = r

a
dE

due to Eq. (3.49). Differentiation of the sin E equation above gives

cos E dE =
√

1 − e2(cos φ + e)

(1 + e cos φ)2
dφ,

and substitution of the cos E equation leads to

dE =
√

1 − e2

1 + e cos φ
dφ. (9.14)

Since by Eq. (3.35)

r

a
= 1 − e2

1 + e cos φ
,
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ι

ωi + fi

ω e +
 fe Ψ

r

R3

Figure 9.3 Orbital planes of the third body and the binary (horizontal plane) are
at an angle ι relative to each other. The current position vectors r of the binary
and R3 of the third body are at angles ωi + φi and ωe + φe from the line of nodes,
respectively. The angle between r and R3 is ψ .

(9.14) can be expressed as

dE = 1√
1 − e2

( r

a

)
dφ.

Then we finally get

dM = 1√
1 − e2

( r

a

)2
dφ. (9.15)

Equipped with this information we write for the outer orbit

R3 = ae(1 − e2
e )

1 + ee cos φe
,

dMe =
(

R3

ae

)2 dφe√
1 − e2

e

,

(9.16)

and obtain

dVe = (3 cos2 ψ − 1)
(1 + ee cos φe)

a3
e (1 − e2

e )3/2
dφe. (9.17)

We still have to evaluate cos ψ . With the aid of Fig. 9.3 we write

cos ψ = cos(ωe + φe) cos(ωi + φi ) + sin(ωe + φe) sin(ωi + φi ) cos ι. (9.18)
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The inclination ι is the relative inclination of the two orbits i.e. ι = ιi + ιe in the
system based on the invariable plane. At present we are not interested in quantities
depending on the variables of the inner binary and can simplify Eq. (9.18) by writing

C1 = cos(ωi + φi ),

C2 = sin(ωi + φi ).
(9.19)

Then

cos2 ψ =C2
1 (cos2 ωe cos2 φe + sin2 ωe sin2 φe

− 2 sin ωe cos ωe sin φe cos φe)

+ C2
2 (cos2 ωe sin2 φe + sin2 ωe cos2 φe

+ 2 sin ωe cos ωe sin φe cos φe) cos2 ι

+ 2C1C2(cos ωe sin ωe cos2 φe − sin2 ωe sin φe cos φe

+ cos2 ωe sin φe cos φe − sin ωe cos ωe sin2 φe) cos ι.

(9.20)

Now we can start our averaging term by term. Let us denote

〈· · · 〉 = 1

2π

∫ 2π

0
· · · dφe. (9.21)

Then we find easily the following results:

〈cos φe〉 = 0,〈
cos2 φe

〉 = 1

2
,

〈
sin2 φe

〉 = 1

2
,

〈sin φe cos φe〉 = 0,

ee
〈
cos3 φe

〉 = 0,

ee
〈
cos φe sin2 φe

〉 = 0,

ee
〈
sin φe cos2 φe

〉 = 0.

(9.22)

After applying these to Eqs. (9.17) and (9.20) we finally get

〈Ve〉 = 1

2a3
e (1 − e2

e )3/2
(3C2

1 + 3C2
2 cos2 ι − 2). (9.23)

Since we are now ready to start the second phase of the orbit averaging, we put
back the terms containing the variables of the inner binary:

〈R〉 = Gm1m2m3

2(m1 + m2)

r2

2a3
e (1 − e2

e )3/2

× {3 [cos2(ωi + φi ) + sin2(ωi + φi ) cos2 ι
]− 2

}
.

(9.24)
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The quantity which we need to integrate is

dVi =
(

r

ai

)2 (
3
[
cos2(ωi + φi ) + sin2(ωi + φi ) cos2 ι

]− 2
)

dMi . (9.25)

In this case it is simplest to use the eccentric anomaly E for the inner orbit and the
following transformations (Eqs. (3.36), (3.49))

sin φi =
√

1 − e2
i

sin E

1 − ei cos E
,

cos φi = cos E − ei

1 − ei cos E
,

r

ai
= 1 − ei cos E,

which lead to
r

ai
sin φi =

√
1 − e2

i sin E,

r

ai
cos φi = cos E − ei .

(9.26)

From (3.41) we get

dMi = (1 − ei cos E) dE .

Some of the terms which we need to average are(
r

ai

)2

cos2(ωi + φi ) =
cos2 ωi (cos E − ei )

2 + sin2 ωi (1 − e2
i ) sin2 E

− 2 cos ωi sin ωi (cos E − ei )
√

1 − e2
i sin E,(

r

ai

)2

sin2(ωi + φi ) =

sin2 ωi (cos E − ei )
2 + cos2 ωi (1 − e2

i ) sin2 E

+ 2 cos ωi sin ωi (cos E − ei )
√

1 − e2
i sin E,

− ei cos E

(
r

ai

)2

cos2(ωi + φi ) =
− ei cos2 ωi cos E(cos E − ei )

2 − ei sin2 ωi (1 − e2
i ) cos E sin2 E

+ 2ei cos ωi sin ωi (cos E − ei )
√

1 − e2
i sin E cos E .

− ei cos E

(
r

ai

)2

sin2(ωi + φi ) =
− ei sin2 ωi cos E(cos E − ei )

2 − ei cos2 ωi (1 − e2
i ) cos E sin2 E

− 2ei cos ωi sin ωi (cos E − ei )
√

1 − e2
i sin E cos E .

(9.27)
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Therefore we need the following averages

〈
(cos E − ei )

2
〉 = 1

2
+ e2

i ,〈
sin2 E

〉 = 1

2
,

〈(cos E − ei ) sin E〉 = 0,

−ei
〈
cos E(cos E − ei )

2
〉 = e2

i ,

−ei
〈
sin2 E cos E

〉 = 0,

−ei 〈(cos E − ei ) sin E cos E〉 = 0,〈
(1 − ei cos E)3

〉 = 1 + 3

2
e2

i .

(9.28)

After using these averages together with Eq. (9.25) we get

〈Vi 〉 = 3 cos2 ωi

(
1

2
+ e2

i

)
+ 3

2
sin2 ωi (1 − e2

i ) + 3 cos2 ωi e
2
i + 3 sin2 ωi e

2
i

−3 sin2 ωi e
2
i sin2 ι − 2 − 3e2

i + 3 sin2 ωi

(
1

2
+ e2

i

)
(9.29)

+3

2
cos2 ωi (1 − e2

i ) +
[
−3 sin2 ωi

(
1

2
+ e2

i

)
− 3

2
cos2 ωi (1 − e2

i )

]
sin2 ι

(Problem 9.2). Putting all factors together we get the final result for the doubly orbit
averaged perturbing function:

〈〈R〉〉 = Gm1m2m3a2
i

8m Ba3
e (1 − e2

e )3/2

[
2 + 3e2

i − 3 sin2 ι
(
5e2

i sin2 ωi + 1 − e2
i

)]
. (9.30)

9.5 Motions in the hierarchical three-body problem

We first note that the perturbing function 〈〈R〉〉 does not depend on the Delaunay
elements li and le since we have averaged our Hamiltonian over these elements. As
we have learnt before in Chapter 4, the corresponding canonical momenta Li and
Le are constant which means that the semi-major axes ai and ae remain constant
during the orbital motion. In addition, we notice that 〈〈R〉〉 does not depend on ωe

either which means that the corresponding canonical momentum Ge is a constant
of motion. Since 1 − e2

e = G2
e/L2

e , we also have the outer orbit eccentricity ee as
a constant of motion. The outer orbit does not vary its size nor its shape in the
first approximation. Also, Eq. (4.123) tells us further that the outer inclination ie

remains constant. Without loss of generality, we choose ie = 0, which means that
in Eq. (9.30) ι = ιi + ιe = ιi . Then Eq. (4.123) with a constant ai tells us that√

1 − e2
i cos ι = constant. (9.31)
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Let us then get into the business and start by calculating the partial derivatives
of 〈〈R〉〉 which are needed in the Lagrangian planetary equations.

∂〈〈R〉〉
∂ Mi

= ∂〈〈R〉〉
∂�i

= 0,

∂〈〈R〉〉
∂ωi

= −15

8
e2

i sin 2ωi sin2 ι
Gm1m2m3a2

i

m Ba3
e (1 − e2

e )3/2
,

∂〈〈R〉〉
∂ei

= 3

4
ei
(
1 + sin2 ι − 5 sin2 ι sin2 ωi

) Gm1m2m3a2
i

m Ba3
e (1 − e2

e )3/2
,

∂〈〈R〉〉
∂ι

= −3

4
sin ι cos ι

(
1 − e2

i + 5e2
i sin2 ωi

) Gm1m2m3a2
i

m Ba3
e (1 − e2

e )3/2
.

(9.32)

There is a common factor in all of the non-zero derivatives. Let us call this
factor

A = Gm1m2m3

m Ba3
e (1 − e2

e )3/2
. (9.33)

Outside this factor all variables refer to the inner orbit. Therefore we drop the
subscripts i . Then the Lagrangian planetary equations become

ι̇ = −15

8

e2

√
1 − e2

sin 2ω sin ι cos ι
A

n
,

ė = 15

8
e
√

1 − e2 sin 2ω sin2 ι
A

n
,

ω̇ = 3

4

1√
1 − e2

[
2(1 − e2) + 5 sin2 ω(e2 − sin2 ι)

] A

n
,

�̇ = − cos ι

4
√

1 − e2
(3 + 12e2 − 15e2 cos2 ω)

A

n
.

(9.34)

At this point it is useful to introduce a new normalised time unit τ :

τ = A

n
t = Gm1m2m3

m Bnb3
e

t. (9.35)
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Here be is the semi-minor axis of the outer orbit and n the mean motion of the inner
binary. Then the Lagrangian equations are simplified to:

dι

dτ
= −15

8

e2

√
1 − e2

sin 2ω sin ι cos ι,

de

dτ
= 15

8
e
√

1 − e2 sin 2ω sin2 ι,

dω

dτ
= 3

4

1√
1 − e2

[
2(1 − e2) + 5 sin2 ω(e2 − sin2 ι)

]
,

d�

dτ
= − cos ι

4
√

1 − e2
(3 + 12e2 − 15e2 cos2 ω)).

(9.36)

From here on we neglect the factor m1m2/m B in the definition of τ which is
of the order of unity for nearly equal masses. If one of the bodies, say m2, is
very small, we should start the calculation from a Hamiltonian per unit mass. In
this case the mass of the small body does not appear in Eq. (9.35), and the ratio
m1/m B = 1.

It is possible to solve these equations exactly in closed form but the derivation
is rather lengthy ( Kozai 1962, 2004, Sidlichovsky 1983, Marchal 1990, Kinoshita
and Nakai 1999). Heggie and Hut (2003) give a simple description of the solutions.
Here we will follow Innanen et al. (1997) and consider the special case of the small
inner eccentricity e, so small that terms containing e2 can be neglected. Then the
equations are:

dι

dτ
= 0,

de

dτ
= 15

8
e sin 2ω sin2 ι,

dω

dτ
= 3

4
(2 − 5 sin2 ω sin2 ι),

d�

dτ
= −3

4
cos ι,

(9.37)

and in addition, √
1 − e2 cos ι = constant. (9.38)

The first equation (9.37) tells us that ι is constant in this approximation, and therefore
the quantity

A = 5 sin2 ι − 2



234 Perturbations in hierarchical systems

is also constant. The third equation (9.37) is now easily integrated using the known
expressions (Petit Bois 1961)∫

dx

a + b sin2 x

= 1√
a(a + b)

arctan
(a + b) tan x√

a(a + b)
, if a(a + b) > 0,

= 1

2
√−a(a + b)

log

[
(a + b) tan x − √−a(a + b)

(a + b) tan x + √−a(a + b)

]
, if a(a + b) < 0.

(9.39)

For inclinations greater than about 39.23◦ (sin2 ι > 0.4), the solution is

ω = arctan

[√
2

A

e
3
2

√
2Aτ + 1

e
3
2

√
2Aτ − 1

]
, (9.40)

if ω = π/2 when τ = 0 while for inclinations smaller than this limit

ω = arctan

[√
2

−A
tan

(
3

4

√−2Aτ

)]
(9.41)

if ω = 0 when τ = 0 (Problem 9.3). The former solution approaches a constant
value when τ → ∞, while the latter remains periodic. Therefore, in the former
solution we may put dω/dτ = 0 in the third Eq. (9.37) and find

5 sin2 ω sin2 ι = 2. (9.42)

Substitution of this into the second Eq. (9.37) gives the first order equation for the
evolution of eccentricity:

de

dτ
= 15

4
e

√
2

5

(
sin2 ι − 2

5

)
. (9.43)

Depending on the quadrant of ω, de/dτ could also have a negative sign, but here
we consider only the positive case. This is easily integrated:

τ = 0.42 log(e/e0)/
√

sin2 ι − 0.4 (9.44)

if the eccentricity e = e0 when τ = 0. This is valid when ω is at its asymptotic
value. Equation (9.43) implies a rapid growth of the eccentricity. Numerical com-
putations by Innanen et al. (1997) show that if we put e = 1 we get a fairly good
estimate (about 2/3 of the correct value) of the time required to reach the maximum
eccentricity when one starts with a very small eccentricity. Our approximation is
not valid any more when e has increased considerably, and the condition ι = con-
stant (first Eq. (9.37)) does not hold. However we may estimate what happens then
by using Eq. (9.38). It tells us that when e increases, cos ι must increase so as to
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keep
√

1 − e2 cos ι constant. However, since sin ι must be greater than 2/5, cos ι

cannot exceed
√

3/5, and this imposes a maximum value for e = emax. We may
write √

1 − e2
0 cos ι0 =

√
1 − e2

max

√
3

5
(9.45)

where ι0 is the initial value of the inclination and e0 is the initial (small) value of the
eccentricity. In accordance with our assumption 1 − e2

0 must be practically equal
to 1. Then

emax =
√

1 − 5

3
cos2 ι0. (9.46)

Let us take, for example, e0 = 0.05 and ι0 = 60◦. Then emax = 0.76 (Eq. (9.45)).
If we replace e by emax in Eq. (9.44) and ι by ι0 in the approximation where the
inclination is constant, we get a rough estimate for the time it takes the eccentricity
to reach emax, starting from a small initial value: τ = 1.93. When ee is small and
m1m2/m B = 1, Eq. (9.35) gives

t = 1.93
na3

e

Gm3
≈ 0.3

(ae

a

)3 m B

m3
P (9.47)

where P = 2π
√

a3/Gm B is the period of the inner orbit. For a Jupiter-like planet,
perturbed by a companion star of 0.4M� at ae = 1000 AU from the Sun, Eq. (9.47)
gives t = 6.3 × 107 years. Figure 9.4 shows that this underestimates the time of
reaching emax a little which is not surprising since we have solved the equations of
motion in a special case of small eccentricities. In general, we may estimate the
period of the full cycle to be

PKozai ≈
(ae

a

)3 m B

m3
P. (9.48)

The full solution of the equations of motion shows that after obtaining the max-
imum value emax the eccentricity decreases to a minimum, and then another ec-
centricity cycle starts again. This is called a Kozai cycle (Kozai 1962). During the
cycle the inclination varies so that Eq. (9.31) remains valid. At the same time ω may
swing back and forth (‘librate’) about π/2 to the extreme positions given by the
condition dω/dτ = 0, or it may rotate around continuously (‘circulate’). Equation
(9.46) is valid independent of the initial e0 for the libration solutions which are
found only if cos2 ι < 3/5, as we deduced above (Kinoshita and Nakai 1999).

If cos2 ι > 3/5, i.e. ι < 39.23◦ or ι > 140.73◦, we always have a circulation
case. As an example, let us put 2A = −1 in Eq. (9.41), i.e. cos2 ι = 0.7, ι = 33.2◦.
Then for τ ∼< 1 we may solve Eq. (9.41) to get approximately ω ≈ 3/2τ , and in
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Figure 9.4 The evolution of eccentricity e of the inner orbit as a function of time.
The masses of the bodies in the inner orbit are 0.001M� and 1M� and the third-
body mass is 0.4M�. The initial eccentricity of the inner binary is e0 = 0.05 and
its semi-major axis is 5.2 AU. The third body is at the distance of 1000 AU from the
binary. Various values of the orbital inclination ι = 40◦, 50◦, 60◦ and 90◦ (labelled
by the curves) have been studied. The time unit is 107 yr. In the first order theory,
we expect the binary to reach its maximum eccentricity emax at t ≈ 108 yr.

this approximation the second equation (9.37) becomes

de

e
= 3

16
sin 2ω d2ω. (9.49)

The solution is

e = e0 exp

[
− 3

16
cos 2ω

]
(9.50)

where e0 is the value of eccentricity when ω = ω0 = π/4, say, and e varies sinu-
soidally on either side of it between 0.83e0 and 1.21e0. In general, the solutions
for ι < 39.23◦ resemble this in that they possess the periodic term in 2ω, and
the amplitude of the variation of e is diminished when sin2 ι becomes small (see
Fig. 9.5).

The period of the ω cycle for ι > 39.23◦ is obtained approximately from Eq.
(9.44) by putting e = 1 and by multiplying τ by six. The factor six is required since
the typical eccentricity evolution time from a small value to its peak value is about
(3/2)τ , and the eccentricity period is twice as long, i.e. ≈ 3τ . The ω cycle is twice
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Figure 9.5 The evolution of the eccentricity e as a function of ω of the inner binary.
An example of both the libration (solid line) and the circulation (dashed line) orbit
is shown. The constant on the right hand side of Eq. (9.38) is 0.55 (Kinoshita and
Nakai 1999).

the length of the eccentricity cycle. Thus

Pω ≈ 2.5 log (1/e0)/
√

sin2 ι0 − 0.4. (9.51)

Some numerical examples are displayed in Fig. 9.6 (Kinoshita and Nakai
1999).

Example 9.1 What if the Sun is in reality a binary star? Are the orbits of planets
stable in that case? We probably do not have a companion; it would already have
been detected even if it were of low luminosity. But this question is relevant to other
stellar systems which quite often are binaries.

The Kozai mechanism suggests that as soon as the inclination of the companion
is greater than about 40◦, oscillations in orbital eccentricities of planets should take
place and they should destroy the stability of the planetary system. Qualitatively
this should be true for any mass value m3 of the companion star; only the time
of the destruction is pushed further into the future when the companion mass is
decreased. Also the influence of the companion should work at different rates on
different planets and destroy the planar structure of the system.
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Figure 9.6 The period of the ω cycle expressed in the normalised time units
(Eq. (9.35)) as a function of the initial inclination ι0. The results are shown for
e0 = 0.05 and 0.2 both for the circulation (solid and long-dashed lines) and the
libration case (dotted and short-dashed lines).

Numerical simulations of the Solar System evolution with companions of differ-
ent masses and in orbits of different inclinations (Innanen et al. 1997) have shown
that this is only partly true. It was found that a companion at the distance of 400 AU
did not destabilise the Solar System if its inclination was 45◦ or less. This was in-
dependent of the companion mass which was varied between 0.05M� and 0.4M�.
To some extent this agrees with what we expect from the Kozai cycles. But what is
clearly different from the Kozai theory is the fact that the lowest mass companion
(0.05M�) cannot destabilise the system at any inclination. Also the Solar System
remains ‘dynamically rigid’, the planetary orbits do not evolve at different rates,
but rather the whole system remains planar even though the Solar System plane
precesses as a whole. These interesting features can be assigned to the mutual grav-
itational attraction between the planets since they disappear if the planet masses
are taken to be close to zero.

Therefore we cannot rule out on dynamical grounds the possibility that the
Sun has a small companion star. More importantly, binary stars can have stable
planetary systems like the Solar System as long as the companion is far enough
from the primary star, and is small enough in mass. The mutual gravity between
the planets gives the system rigidity which protects it from the destructive Kozai
cycles.
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Problems

Problem 9.1 Consider a hypothetical perturbation, the perturbing function of
which is

R = αe2 cos M + βe2 sin ι cos(M + �).

How does this affect the orbital elements? Which changes are secular and which
only periodic?

Problem 9.2 Calculate the averages over a complete cycle of φe given in
Eq. (9.22) and the averages over a complete cycle of E given in Eq. (9.28). Then
verify Eq. (9.29).

Problem 9.3 Show that the solutions of Eq. (9.37) are given by Eq. (9.40) if
ι > 39.23◦ and by Eq. (9.41) if ι < 39.23◦.
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Perturbations in strong three-body encounters

The theory of the previous section is applicable to gentle perturbations by a distant
companion of a binary. Strong perturbations are often more important in astro-
physics where a major change in the binary orbit is achieved in a few orbital
periods. Necessarily the techniques have to be different and also the results are
more approximate. But we have the advantage that numerical orbit calculations do
not require much time and it is possible to refine the analytical theory to suit the
numerical results. In this chapter we also study triple stars and the question of stable
orbits in such systems.

10.1 Perturbations of the integrals k and e

The Lagrangian equations used in the previous chapter are the traditional approach
to perturbations. We will now study another method for finding the effect of per-
turbations on the vector elements k and ê. This method can be applied to a great
variety of perturbations.

We begin with the Newtonian equation of motion in the form

r̈ = −µr/r3 + f , (10.1)

where f is a (small) extra term due to perturbations. It can be any vector valued
quantity with a dimension of acceleration, and it may be a function of the position
and velocity.

First we repeat the definitions of k and e:

k = r × ṙ ,

−µe = k × ṙ + µr/r.
(10.2)

240
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The time derivatives of these are

k̇ = ṙ × ṙ + r × r̈ = r × (−µr/r3) + r × f

= r × f ,

(10.3)

−µė = k̇ × ṙ + k × r̈ + µ
ṙ
r

− µ
r ṙ

r2

= k̇ × ṙ + (r × ṙ ) ×
(
−µ

r
r3

)
+ k × f + µ

ṙ
r

− µ
r ṙ

r2

= k̇ × ṙ + k × f + µ

(
r

ṙ · r
r3

− ṙ
r · r
r3

+ ṙ
r

− r ṙ

r2

)
= k̇ × ṙ + k × f .

(10.4)

We know that k is perpendicular to the orbital plane and its length depends on
the parameter p of the orbit. Therefore it can be expressed in terms of p and a unit
vector êζ perpendicular to the orbital plane:

k = √
pµêζ . (10.5)

Similarly, the length of e is the eccentricity of the orbit, and its direction is the
direction of the perihelion. Hence

e = eêξ . (10.6)

Using these we find the following expressions for the derivatives of k and e:

k̇ = 1
2

√
µ/p ṗêζ + √

pµ ˙̂eζ , (10.7)

ė = ėêξ + e ˙̂eξ . (10.8)

Next we try to find the change in the eccentricity. Since êξ · ˙̂e ξ = 0, the scalar
product of Eq. (10.8) with êξ gives

êξ · ė = ė, (10.9)

from which

ė = êξ · ė = − 1

µ
(êξ · k̇ × ṙ + êξ · k × f )

= − 1

µ
(êξ · (r × f ) × ṙ + êξ · k × f )

= − 1

µ
(êξ · (r × f ) × ṙ + êξ · (

√
pµêζ × f ))

= 1

µ
(êξ · ṙ × (r × f ) + √

pµêη · f ).

(10.10)
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The change in the semi-latus rectum of the orbit is found by taking the scalar
product of Eq. (10.7) and êζ :

êζ · k̇ = 1
2

√
µ/p ṗ,

from which

ṗ = 2
√

p/µêζ · (r × f ). (10.11)

The effect on the semi-major axis is found from the equation a = p/(1 − e2), when
we know the changes in p and e:

ȧ = ṗ

1 − e2
+ 2peė

(1 − e2)2
. (10.12)

We may also derive ȧ directly as follows. Define the concept of perturbation
derivative dP/dt . For any quantity Q, the derivative dQ/dt can be divided in two
parts, the Keplerian part dK Q/dt and the perturbative part dP/dt :

dQ

dt
= dK Q

dt
+ dP Q

dt
. (10.13)

The Keplerian part gives the change of the quantity along the (unperturbed)
Keplerian orbit, while the latter part arises from the perturbing acceleration f . By
definition, an orbital element (say, a) does not change in a Keplerian orbit, and thus

ȧ = dPa

dt
. (10.14)

The position vector r is the same for the Keplerian orbit and for the osculating
orbit (Figure 9.1); thus

dPr
dt

= 0,
dPr

dt
= 0 (10.15)

while

dPv
dt

= f . (10.16)

Let us now apply the perturbative differentiation to Eq. (3.32), one of the basic
relations of Keplerian motion:

v2 = µ

(
2

r
− 1

a

)
. (10.17)

This becomes

2v · f = µ
ȧ

a2
.
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Using Eq. (3.45)

µ = n2a3, (10.18)

and solving for ȧ, we get

ȧ = 2

n2a
v · f . (10.19)

It is easy to show that this result agrees with Eq. (10.12) (Problem 10.1).
As a summary, we have the following formulae for the time derivatives of the

elements:

ė = 1

µ
[êξ · (ṙ × (r × f )) + √

pµêη · f ],

ṗ = 2
√

p

µ
êζ · (r × f ), (10.20)

ȧ = ṗ

1 − e2
+ 2peė

(1 − e2)2
.

10.2 Binary evolution with a constant perturbing force

As another application of the previous section we consider first order secular per-
turbations of the semi-major axis of the inner binary, under a constant perturbing
force. This is relevant to highly hierarchical binaries where the ratio of the semi-
major axes ae/ai is large. Then the outer binary component appears practically
stationary in relation to the fast orbital motion of the inner binary. Previously we
claimed, without proof, that there is no secular energy exchange between the inner
and outer binary components in this situation. Here we establish this claim using
the methods of the previous section.

The first order perturbing potential was given in Eq. (9.12); the corresponding
perturbing acceleration is (Problem 10.5)

f = −Gm3

R3
3

(
r − 3r · R3

R2
3

R3

)
. (10.21)

This acceleration is substituted in Eqs. (10.20), using a constant perturber at

R3 = R3êr (10.22)
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where êr is the unit vector towards the the third body, together with the standard
description of two-body motion:

r = a cos E êξ − aeêξ + b sin E êη,

ṙ = −aĖ sin E êξ + bĖ cos E êη,

Ė =
√

Gm Ba−3/2

1 − e cos E
,

dM = (1 − e cos E) dE .

(10.23)

Then we have some routine calculations to carry out. We start with the calculation
of

r × f = 3Gm3

R3
3

(r · êr )(r × êr ). (10.24)

After substituting

r · êr = a(cos E − e)(êξ · êr ) + b sin E(êη · êr ),

r × êr = a(cos E − e)(êξ × êr ) + b sin E(êη × êr ),

one obtains

(r × f ) dM =3Gm3

R3
3

[ (
a2 cos2 E + a2e2 − 2a2e cos E

)
× (êξ · êr )(êξ × êr )

+ b2 sin2 E(êη · êr )(êη × êr )

+ ab sin E(cos E − e)(êξ · êr )(êη × êr )

+ ab sin E(cos E − e)(êη · êr )(êξ × êr )

]
× (1 − e cos E) dE,

(10.25)

where both sides were multiplied by the differential dM in preparation for the
integration over one orbital cycle. The integration may now be carried out using the
eccentric anomaly E as the integration variable. Keeping in mind our earlier results
for orbital averaging (Eqs. (9.22) and (9.28)), it becomes obvious that only the first
two terms in the square brackets of Eq. (10.25) make a non-zero contribution to the
average. Therefore

〈r × f 〉 = 3Gm3

R3
3

[(
1

2
a2 + 2a2e2

)
(êξ · êr )(êξ × êr )

+ 1
2 b2(êη · êr )(êη × êr )

]
. (10.26)
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Next, one requires the projection of the above quantity in the êζ direction:

êζ · 〈r × f 〉 = 3Gm3

R3
3

(
1

2
a2 + 2a2e2 − 1

2
b2

)
(êη · êr )(êξ · êr ). (10.27)

Here we have made use of the well known properties of triple vector products, e.g.

êζ · (êξ × êr ) = (êζ × êξ ) · êr = êη · êr . (10.28)

Since b2 = a2(1 − e2) Eq. (10.27) simplifies to

〈êζ · r × f 〉 = 15

2

Gm3

R3
3

a2e2(êξ · êr )(êη · êr ). (10.29)

The next quantity to be calculated is

ṙ × (r × f ) = −3Gm3

R3
3

(r · êr ) [(ṙ · r )êr − (ṙ · êr )r ] . (10.30)

We substitute

ṙ · r = −a2 Ė sin E cos E + a2eĖ sin E + b2 Ė sin E cos E,

ṙ · êr = −aĖ sin E(êξ · êr ) + bĖ cos E(êη · êr ),

in Eq. (10.30) and take the projection on the ξ axis. Then (Problem 10.6)

êξ · (ṙ × (r × f )) dM = −3Gm3
√

Gm B a−3/2

R3
3

A dE (10.31)

where

A = a3(1 − e2) sin E cos E(cos E − e)
[
(êξ · êr )2 − (êη · êr )2

]
+ a2b cos E

[
1 − 2e2 − (2 − e2) cos2 E + 2e cos E

]
(êξ · êr )(êη · êr ).

(10.32)
Averaging over the complete orbital cycle and observing that the only non-
zero contribution comes from the last term inside the second square brackets in
Eq. (10.32),

〈êξ · (ṙ × (r × f ))〉 = −3Gm3
√

Gm B

R3
3

a1/2 be(êξ · êr )(êη · êr ). (10.33)

Finally,

(êη · f )dM = −Gm3

R3
3

[
b sin E − 3a(cos E − e)(êξ · êr )(êη · êr )

(10.34)
− 3b sin E(êη · êr )2

]
(1 − e cos E) dE



246 Perturbations in strong three-body encounters

which, after orbital averaging, becomes

〈êη · f 〉 = −9

2

Gm3

R3
3

a e(êξ · êr )(êη · êr ). (10.35)

Now we have calculated all the necessary pieces for using Eqs. (10.20). We can
easily see that

〈ė〉 = −15

2

√
p

Gm B

Gm3

R3
3

a e(êξ · êr )(êη · êr ), (10.36)

〈 ṗ〉 = 15

√
p

Gm B

Gm3

R3
3

a2e2(êξ · êr )(êη · êr ), (10.37)

which leads to

〈ȧ〉 = 〈 ṗ〉
(1 − e2)

+ 2pe 〈ė〉
(1 − e2)2

= 0. (10.38)

Thus, in our current approximation, the semi-major axis of the binary does not have
secular evolution, unlike for example the eccentricity of the binary. This provides
the necessary justification for the use of the orbit averaged perturbing potential in
the earlier sections.

Our next problem, in order of increasing difficulty, is the calculation of the energy
change of a binary when a third body passes by at a close distance to it. Then it is not
possible to claim that the third body is stationary relative to the binary but we must
describe its orbital motion. For that purpose the approximate ways of describing
elliptic motion as a function of time derived in Section 3.15 are used. It is not as
simple as one might expect from the simple geometry of the orbit; one resorts to
infinite series, truncating the series at suitable points for practical calculations.

10.3 Slow encounters

The problem of the energy change of a binary (mass m B) caused by a passing third
body (mass m3) is rather complicated (Walters 1932a, b, Lyttleton and Yabushita
1965,Yabushita 1966, Heggie 1975, Heggie and Hut 1993, Roy and Haddow 2003).
It is obvious that it should be so since the two orbits may be oriented in many
different ways relative to each other, with different eccentricities, semi-major axes,
closest approach distances etc. For this reason we limit ourselves to the rather
simple case of a circular binary and a third-body orbit of fixed eccentricity. The
outer orbit is taken to be elliptic and thus we are not really dealing with three-
body scattering. The approximation considered here is called adiabatic since the
perturbing potential varies slowly in comparison with the orbital frequency of the
binary.
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The inclination between the two orbital planes is called ι. The other parameters
describing the relative orientations of the inner and the outer orbits � and ω, are
considered less essential, and their influence is averaged over in the end.

The eccentricity of the outer orbit is called e. It has been shown by numerical
orbit integration that the energy change is not very sensitive to the eccentricity of
the outer orbit near the parabolic case (Saslaw et al. 1974). In the calculation below
we give the eccentricity a fixed value e = 0.265. It is low enough that the series
presented in Section 3.15 converge well, and the particular value of 0.265 is chosen
for convenience since the value of mean anomaly M = π/3 corresponds to the true
anomaly φe = π/2 at nearly this eccentricity. The calculation could be carried out
for any other low value of e without significant change in the final result.

The encounter is assumed to be effective only between φe = −π/2 and φe =
π/2 which is where most of the action takes place especially in highly eccentric
or parabolic orbits. Therefore we expect that the derived model is applicable to
parabolic or even mildly hyperbolic encounters.

The circular binary is rather special but much simpler than the general case
because the orientation of the major axis in its orbital plane does not need to be
specified. The special symmetry due to the zero inner eccentricity simplifies the
derivation considerably.

We divide the integration in two parts: the approaching branch, from M = −M0

to M = 0, and the receding branch from M = 0 to M = +M0. M0 is defined so
that the inner binary executes exactly one revolution in its initial orbit while the
third body progresses from M = 0 (pericentre) to M = M0. In our example below
M0 is close to π/3. We ignore the effects of the subsequent revolutions since they
typically happen while the third body is outside the range

−π

2
≤ φe ≤ π

2
. (10.39)

We start by integrating the relevant functions between M = 0 and M = M0.
Numerical experiments have shown that the effects of the whole encounter may be
well estimated by using the receding branch.

The energy change may be calculated using Eq. (9.8) with the perturbing function
of Eq. (9.12). We get

n2ȧ = 2

a

∂ R

∂t
= 2

a

∂ R

∂r
· ∂r
∂t

= 2

a
∇ R · ṙ ,

where the gradient of the perturbing function R is related to the perturbing accel-
eration of Eq. (10.21) by

∇ R = f .
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Thus the rate of change of the binary semi-major axis becomes

ȧ = 2
√

a

µ

(
1

n
f · ṙ

)
.

The product f · ṙ includes the term r · ṙ which equals zero as long as the binary
remains circular. Therefore, using Eqs. (10.21)–(10.23) with e = 0, Ė = n and
a = ai ,

1

n
f · ṙ = 3Gm3

R3
3

a2
i

[
cos2 φ(êξ · êr )(êη · êr ) − sin2 φ(êξ · êr )(êη · êr )

− sin φ cos φ(êξ · êr )2 + sin φ cos φ(êη · êr )2

]
.

Alternatively, we may derive the energy change by following the steps taken in
Section 10.2. Putting the inner eccentricity ei = 0, replacing the inner eccentric
anomaly E by φ and writing ai for the inner semi-major axis, Eqs. (10.20) and
(10.25) lead to ȧ = 2

√
a/µ times the vector product

êζ · (r × f ) = 3Gm3

R3
3

a2
i [cos2 φ(êξ · êr )êζ · (êξ × êr )

+ sin2 φ(êη · êr )êζ · (êη × êr )

+ sin φ cos φ(êξ · êr )êζ · (êη × êr )

+ sin φ cos φ(êη · êr )êζ · (êξ × êr )].

(10.40)

After calculating the vector products of the unit vectors, we realise that they cor-
respond to the products in the previous equation, and that the right hand sides of
the two equations are identical. Thus the two routes of calculating ȧ give the same
answer, as they should.

We choose the orientation of the outer orbit such that the projection of its major
axis lies along the ξ axis, with the pericentre direction on the negative side of the
axis, and the line of nodes is taken to be on the η axis (ω = � = π/2 for the outer
orbit; see Fig. 10.1). This makes the calculation less cumbersome; the general case
of arbitrary relative orientations will be discussed later (Section 10.4). Let the unit
vector êA point towards the pericentre of the outer orbit and let the unit vector êB

be the corresponding perpendicular unit vector. Then

êr = a

R3
(cos E − e)êA + b

R3
sin E êB . (10.41)

Here the symbols a, b, e and E (the semi-axes, eccentricity and the eccentric
anomaly, respectively) refer to the outer orbit. The vector products needed in
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ι
êη

êξ

êζ

êB
êA

Figure 10.1 Coordinate base vectors êξ , êη of the binary orbital plane and the base
vectors êA, êB of the third-body orbit, see text.

Eq. (10.40) are

êξ · êr = − a

R3
(cos E − e) cos ι,

êζ · (êξ × êr ) = êη · êr = − b

R3
sin E,

êη · êr = − b

R3
sin E,

êζ · (êη × êr ) = −êξ · êr = a

R3
(cos E − e) cos ι,

(10.42)

where ι is the angle of inclination between the two orbital planes. Use was
made here of the identity êB = −êη which is applicable for our chosen relative
orientations.

Substituting these products in Eq. (10.40) and making use of the identities

cos2 φ − sin2 φ = cos 2φ,

2 sin φ cos φ = sin 2φ,



250 Perturbations in strong three-body encounters

leads to

êζ · (r × f ) = 3Gm3a2
i

a3

(
a

R3

)5

×
[√

1 − e2 sin E(cos E − e) cos ι cos 2φ

− 1

2
(cos E − e)2 cos2 ι sin 2φ

+ 1

2
(1 − e2) sin2 E sin 2φ

]
.

(10.43)

The factor (a/R3)5 decreases monotonically from its greatest value (1 − e)−5 at
the pericentre (φe = 0) to (1 − e2)−5 at the end of the latus rectum (φe = π/2). For
an orbit of high eccentricity the decrease is by a factor of almost 32, while at the
low eccentricity of e = 0.265 it is still by a factor of ≈ 3.2. Therefore we expect
that the integral of êζ · (r × f ) over M receives its greatest contribution from the
second term in the square brackets which is also at its maximum at the pericentre.
In the following we ignore the other two terms in the square brackets of Eq. (10.43)
which go to zero at φe = 0.

Next, E and R3 are expressed as functions of the mean anomaly M of the outer
orbit. Using Eq. (3.90) with e = 0.265 we get

a

R3
= 1 + 0.263 cos M + 0.0686 cos 2M + 0.0201 cos 3M (10.44)

which is raised to the fifth power. After some labour we get approximately, ignoring
terms of higher order than cos 5M :

(
a

R3

)5

= 1.416 (1 + 1.193 cos M + 0.586 cos 2M

+ 0.272 cos 3M + 0.108 cos 4M + 0.0473 cos 5M).
(10.45)

Similarly, expressions (3.85) for cos E and cos 2E become

cos E = −0.1325 + 0.974 cos M + 0.126 cos 2M

+ 0.0246 cos 3M + 0.00568 cos 4M,

cos 2E = −0.263 cos M + 0.931 cos 2M

+ 0.245 cos 3M + 0.0636 cos 4M + 0.0173 cos 5M,

(10.46)
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and

1

2
(cos E − e)2 = 0.25 cos 2E − 0.265 cos E + 0.285

= 0.320 − 0.324 cos M + 0.199 cos 2M

+ 0.0546 cos 3M + 0.0143 cos 4M

(10.47)

(Problem 10.7).
The final step, before integration of Eq. (10.40), is to write φ in terms of M .

Since we are dealing with a circular binary, the true anomaly is simply a linear
function of time t :

φ = ni t + φ0 (10.48)

where ni is the mean motion of the binary and φ0 is the true anomaly at the time of
the pericentre passage (t = 0). The corresponding relation for the mean anomaly
of the outer orbit is

M = net. (10.49)

Equating the times in these two expressions gives

t = M

ne
= φ − φ0

ni
(10.50)

or

φ = ni

ne
M + φ0. (10.51)

The ratio ni/ne depends on the normalised pericentre distance Q, defined as

Q = a(1 − e)/ai = 0.735
a

ai
. (10.52)

Instead of Q it is often more practical to use the parameter

k ≡ 2
ni

ne
=

√
2

(
2m B

m B + m3

)1/2 ( a

ai

)3/2

= 8.87

(
2m B

m B + m3

)1/2 ( Q

2.5

)3/2

.

(10.53)

With these definitions

2φ = k M + 2φ0. (10.54)

Using the identity

sin 2φ = sin k M cos 2φ0 + cos k M sin 2φ0
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the integral over Eq. (10.40) may now be formally written as∫ M0

0
êζ · (r × f ) dM = 3Gm3

a3
a2

i

(
I (1) sin 2φ0 + I (2) cos 2φ0

)
cos2 ι (10.55)

where

I (1) = −1

2

∫ M0

0
cos k M

(
a

R3

)5

(cos E − e)2 dM (10.56)

and

I (2) = −1

2

∫ M0

0
sin k M

(
a

R3

)5

(cos E − e)2 dM. (10.57)

Let us start with the integral I (2). Substituting Eqs. (10.45) and (10.47) into
Eq. (10.57) and transforming the products sin aM cos bM (where a and b are arbi-
trary real numbers) by

sin aM cos bM = 1

2
[sin(a + b)M + sin(a − b)M] ,

one obtains

I (2) = −
∫ M

0
[0.279 + 0.183 cos M + 0.291 cos 2M + 0.229 cos 3M

+ 0.139 cos 4M + 0.0733 cos 5M + 0.0358 cos 6M

+ 0.0163 cos 7M + 0.0072 cos 8M] sin k M dM

= 1

200

∣∣∣∣
M0

0

+8∑
n=−8

Bn

k − n
cos(k − n)M.

(10.58)

The last step can be verified by taking the derivative d/dM of the right hand side;
by doing so, one also finds the values of the coefficients Bn:

B0 = 55.8,

B1 = B−1 = 18.3,

B2 = B−2 = 29.1,

B3 = B−3 = 22.9,

B4 = B−4 = 13.9, (10.59)

B5 = B−5 = 7.33,

B6 = B−6 = 3.58,

B7 = B−7 = 1.63,

B8 = B−8 = 0.72.
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Figure 10.2 The values of the coefficients Bn in Eq. (10.60) as a function of n.
The line shows an exponential fit.

We see that the values of the coefficients decrease with increasing n approxi-
mately as

Bn � 365e−0.78n (10.60)

for n ≥ 3 (see Fig. 10.2). Qualitatively this result holds also for eccentricities other
than e = 0.265.

Using the identity

cos aM cos bM = 1

2
[cos(a + b)M + cos(a − b)M]

the other integral becomes

I (1) = − 1

200

∣∣∣∣
M0

0

+8∑
n=−8

Bn

k − n
sin(k − n)M. (10.61)

The value of M0 is obtained from Eq. (10.54) by putting φ − φ0 = 2π :

M0 = 4π

k
. (10.62)

This is used to evaluate I (1) and I (2).
In the above sums the term n = 0 gives no contribution since at the upper limit

sin k M0 = sin 4π = 0 and cos k M0 = cos 4π = 1, and the values are the same at
the lower limit. The remaining terms may be combined pairwise; for I (1) and I (2)
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the pairs are

− 1
200 Bn

[
1

k+n sin(k + n) 4π
k + 1

k−n sin(k − n) 4π
k

]
,

(10.63)
1

200 Bn
[

1
k+n

(
cos(k + n) 4π

k − 1
)+ 1

k−n

(
cos(k − n) 4π

k − 1
)]

,

respectively. Since

sin(k + n)
4π

k
= − sin(k − n)

4π

k
= sin 4π

n

k
,

cos(k + n)
4π

k
= cos(k − n)

4π

k
= cos 4π

n

k
,

these pairs become

− 1

200
Bn sin 4π

n

k

[
1

k + n
− 1

k − n

]

= 1

100

nBn

k2

[
1 −

(n

k

)2
]−1

sin 4π
n

k
,

1

200
Bn

(
cos

4πn

k
− 1

)[
1

k + n
+ 1

k − n

]

= 1

100

Bn

k

[
1 −

(n

k

)2
]−1 (

cos
4πn

k
− 1

)
.

(10.64)

Therefore the sums for I (1) and I (2) become

I (1) = 1

100

1

k2

8∑
n=1

nBn

[
1 −

(n

k

)2
]−1

sin

(
4πn

k

)

I (2) = 1

100

1

k

8∑
n=1

Bn

[
1 −

(n

k

)2
]−1 [

cos

(
4πn

k

)
− 1

]
.

(10.65)

For example, let us take k = 12. Equations (10.51) and (10.53) show that with
k = 12, φ − φ0 = 2π when M = π/3, i.e. the binary completes one revolution
while the third body moves from the pericentre to the end of the latus rectum. This
value of k corresponds to Q � 3.06 if m B = m3 (Eq. (10.53)). We get

I (1) = 1

14400
(15.98 + 51.82 − 54.05 − 38.41 + 14.93 + 8.98)

� −0.00005

I (2) = − 1

1200
(9.22 + 44.88 + 48.90 + 23.41 + 4.43 + 1.23 + 1.94)

� −0.11.

(10.66)
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Since I (1) is much smaller than I (2) we will not consider it further. By numerical
evaluation of the sums in Eq. (10.65) one may show that this is true also for other
values of k, k > 8.

The integral I (2) depends on k in two ways: first, there is the obvious k−1 factor
in front of the summation, but also the sum itself depends on k. It is easy to
verify that at small k (k ∼< 15, corresponding to Q ∼< 3.5 when m B = m3) this
dependence is weak and in practice may be neglected. For higher k the sum decreases
exponentially. The exponential factor has its origin in the exponential decay of the
Bn coefficients as a function of n (Eq. (10.60)) together with the connection n = k/4
at the first maximum of the absolute value of the periodic factor [cos(4πn/k) − 1].
The exponential factor is of great importance at large Q (Heggie 1975, Roy and
Haddow 2003). At first we will ignore it, and come back to it later.

At k = 12 Eq. (10.55) thus becomes∫ M0

0
êζ · (r × f ) dM ≈ −0.3

Gm3

a3
a2

i cos2 ι cos 2φ0. (10.67)

For any other value of k (9 ∼< k ∼< 15), the right hand side should be multiplied by
12/k (Eq. (10.68)). From Eq. (10.53) we get

12

k
= 1.35

(
2m B

m B + m3

)−1/2 ( Q

2.5

)−3/2

(10.68)

and consequently∫ M0

0
êζ · (r × f ) dM � − 0.4

Gm3

a3
a2

i

(
2m B

m B + m3

)−1/2

×
(

Q

2.5

)−3/2

cos2 ι cos 2φ0.

(10.69)

Note that we recover Eq. (10.67) if Q = 3.06 (corresponding to k = 12) and m B =
m3.

Now the change in the semi-major axis �ai may be calculated from Eq. (10.20)
when the inner eccentricity ei = 0:

�ai = 2a1/2
i√

Gm B

∫ t0

0
êζ · (r × f ) dt = 2a1/2

i

ne
√

Gm B

∫ M0

0
êζ · (r × f ) dM. (10.70)

Here the integration over time t , through one period t0 of the inner orbit, was replaced
by integration over the mean anomaly of the outer orbit M using M = net , and the
mean motion of the outer orbit

ne =
(

G(m B + m3)

a3

)1/2

. (10.71)
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Figure 10.3 The relative energy change −�E/E = � of the binary in a parabolic
encounter with a third body. Computer experiments (+) are compared with a
sinusoidal function of φ0. The values of the mean energy change 〈�〉 and the
amplitude A(�) are indicated. The case of ι = 0◦, m3 = m B , ei = 0 and Q = 3.

Substituting Eq. (10.69) into Eq. (10.70) and making use of Eqs. (10.52) and (10.71),
one obtains

� = �ai

ai
= −0.09

m3

m B

(
Q

2.5

)−3

cos2 ι cos 2φ0. (10.72)

Note that in this chapter we reverse the sign of � relative to its definition in
Eq. (8.1).

This expression may be compared with results from numerical orbit calculations
with parabolic third-body orbits. Figure 10.3 shows an example of how � varies
with the phase angle φ0. We see that in fact � is of the form

� = 〈�〉 + A(�) cos 2φ0, (10.73)

where A(�) is the amplitude of the variation and 〈�〉 is the mean level. Equation
(10.72) suggests 〈�〉 = 0; why this is not true becomes clearer in Section 10.5.

Let us now consider the exponential factor. The sum of I (2) (Eq. (10.65)) can be
evaluated numerically and approximated by −230e−0.04k in the interval 15 ≤ k ≤
75 (Problem 10.8). Using Eq. (10.68) it becomes

exp[−0.5(Q/Q1)3/2],
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where the scale factor Q1 is

Q1 = 2.5(1 + m3/m B)1/3. (10.74)

Therefore the Q dependence in A(�) should be of the form

Q−3 exp[−0.5(Q/Q1)3/2]. (10.75)

In many applications it is easier to use a pure power-law rather than this com-
bination of power-law and exponential. The exponential can always be modelled
locally by a power-law, with a power which increases with increasing Q. Thus we
have to specify the range of Q we are interested in, and then make the proper choice
of the approximate power. We do this first at the smallest values of Q where our
theory may still be applicable. This range is approximately

Qst < Q < 1.5Qst

where Qst signifies the stability boundary. It is defined as the minimum value Q
where the original binary survives the encounter at all phase angles φ0 and at all
values of ω and �.

It is possible to derive an approximate expression for Qst from Eq. (10.77)
by requiring that the sinusoidally varying component of � has a specific value
at the stability boundary, e.g. A(�) = 0.09. Our argument would be that greater
amplitudes of � would lead to an exchange of a binary member with the third body.
Then

Q(a)
st = 2.5(m3/m B)1/3(cos2 ι)1/3. (10.76)

Taken literally, this would imply that the stability boundary goes to zero at ι = 90◦

which is not reasonable. In the next section we will see that generally one should
replace cos ι by 1 + cos ι in expressions like this. In Section 10.5 we will learn that
we should expect a functional form of a constant + (1 + cos ι)2 instead of cos2 ι.
In anticipation of these results we write numerical fitting functions

Q(d)
st = 2.52[(1 + m3/m B)/2]0.45[(0.1 + (1 + cos ι)2)/4]m,

Q(r )
st = 2.75[(1 + m3/m B)/2]0.225[(0.4 + (1 + cos ι)2)/4]0.4.

(10.77)

The first one is for direct orbits (cos ι0 ≤ cos ι ≤ 1), and the second one for retro-
grade orbits (−1 ≤ cos ι ≤ cos ι0). The power law index m is given by

m = 0.06 + 0.08(1 + m3/m B),

and the direct/retrograde border cos ι0 is defined as

cos ι0 = 1.52[(1 + m3/m B)/2] − 1.28.
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Figure 10.4 The stability limit in numerical experiments (+) as a function of cos ι.
The line follows Eq. (10.77). The case of m3 = m B .

This gives a good representation of the stability boundary when the masses are
not too unequal, i.e. in the mass range 0.2 ≤ m3/m B ≤ 2.0. Note that (m3/m B)
of Q(a)

st is replaced by (1 + m3/m B) in the more accurate Q(d)
st and Q(r )

st . Because
of this the stability boundary scales as a power of the exponential scale factor Q1

(Eq. (10.74)). A fit of these functions to experimental data is shown in Fig. 10.4.
Hills (1992) determined the stability boundary numerically over the mass range

0.15 ≤ m3/m B ≤ 5000. He used orbits of random inclinations and obtained the
result

Qst(Hills) = 2.1(1 + m3/m B)1/3. (10.78)

This is in some ways a compromise between Q(d)
st and Q(r )

st , since the power 1/3
of the mass factor is intermediate between the corresponding powers of 0.45 and
0.225 in Eq. (10.77). It is simpler to use Eq. (10.78) than (10.77) if the inclinations
are random (or unknown).

We may now return to Eq. (10.72) which may be written in two parts as

� = A(�) cos 2φ0,

A(�) = −0.09
m3

m B

(
Q

2.5

)−3

cos2 ι.
(10.79)

As in the case of the stability boundary, numerical experiments show that in reality
the functional form of A(�) is more complicated than this.

Experimentally we find that the power n of (Q/2.5)−n is steeper than n = 3.
It is a function of both m3/m B and cos ι. It may be represented by a piecewise
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function

n1 = 7, 0.5 ≤ cos ι ≤ 1,

n1 = 6 + 2 cos ι, 0 ≤ cos ι ≤ 0.5,

n1 = 6 + 5 cos ι, −0.3 ≤ cos ι ≤ 0,

n1 = 4.5, −0.933 ≤ cos ι ≤ −0.3,

n1 = 5.5 − 15(1 + cos ι), −1 ≤ cos ι ≤ −0.933,

(10.80)

and

n = n1 + 0.25

(
1 − m3

m B

)/
(m3/m B). (10.81)

Since the range of applicability of the numerical result is 0.2 ≤ m3/m B ≤ 2.0,
the index n has the range 4.25 ≤ n ≤ 8. Thus it is always greater than the power
n = 3 of Eq. (10.72). This is at least partly because of the exponential factor
(Eq. (10.75)) which has now been transformed into power-law form and its in-
fluence has been effectively absorbed by raising the power-law index n.

The mass factor in Eq. (10.72) is similarly influenced. The reference value
Q = 2.5 is replaced by Q1 = 2.5(1 + m3/m B)1/3 which is the scale factor of the
exponential (Eq. (10.74)). Therefore the mass factor is of the general form

f (m3) =
(

m3

m B

)m(1) (
1 + m3

m B

)m(2)

. (10.82)

The values of m(1) and m(2) depend on the inclination and they may be expressed
in piecewise manner:

m(1) = 1, m(2) = n1/7, −0.3 ≤ cos ι ≤ 1,

m(1) = 1.15, m(2) = 0, −0.96 ≤ cos ι ≤ −0.3,

m(1) = 1.75 − 15(1 + cos ι), m(2) = 0, −1 ≤ cos ι ≤ −0.96.

(10.83)

Since A(�) does not go to zero at ι = 90◦, cos2 ι is not a suitable inclination
factor. Instead for direct orbits we may define

cs(ι) = 0.75 [(1 + cos ι)/2]2 , 0 ≤ cos ι ≤ 1. (10.84)

This factor goes to zero at ι = 180◦ which cannot be correct either. Thus for
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retrograde orbits the inclination factor has to be more complicated. We may use

cs(ι) = 0.75 [(3 + 2 cos ι)/5]2 , −0.865 ≤ cos ι ≤ 0,

cs(ι) = 0.75 [0.015 + 0.37(1 + cos ι)] , −0.94 ≤ cos ι ≤ −0.865,

cs(ι) = 0.75
[
0.0068 + 8(1 + cos ι)2

]
, −1 ≤ cos ι ≤ −0.94.

(10.85)

Note that these forms are fitting functions to numerically calculated orbits. To a
certain extent they are justified by the previous theory. But the last three equations
are clear examples of functional forms where a simple justification is not available.

After defining these rather complicated functions the final result may be written
in a simple form

A(�) = 0.09 f (m3)

(
Q

2.5

)−n

cs(ι). (10.86)

Notice that Eq. (10.86) does not contain the mass ratio ma/mb of the binary
members. Numerical experiments by Hills (1984) for close encounters between
a star–planet system and a stellar intruder show that indeed we may neglect this
parameter in the first approximation.

At low inclinations, 0.5 ≤ cos ι ≤ 1, the Q-dependence may also be repre-
sented by a function of the form Q−3 exp[−0.5(Q/Q1)3/2], as an alternative to the
Q−7 power-law, in accordance with Eq. (10.75). In the Q-range 2.5 ≤ Q/Q1 ≤ 4,
(Q/Q1)−7 � 0.18(Q/Q1)−3 exp[−0.5(Q/Q1)3/2].

10.4 Inclination dependence

Let us now briefly discuss the general case where the relative alignment of the two
orbits is arbitrary. Then we may describe the direction of the unit vector êA relative
to the unit vector êξ by three angles �, ω and ι, with their usual meanings (see
Fig. 10.5). The case calculated above corresponds to ω = � = π/2; here we ini-
tially allow any value of ω and � but in the end take an average result for all possible
values of these ‘less important’ parameters.

It is easy to show (Problem 10.9) using spherical trigonometry that the unit
vectors are

êξ = cos �î − sin � ĵ,

êη = sin �î + cos � ĵ,

êA = cos ωî + sin ω cos ι ĵ + sin ω sin ιk̂,

êB = − sin ωî + cos ω cos ι ĵ + cos ω sin ιk̂,

(10.87)
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Figure 10.5 The coordinate base vectors êξ and êA of the orbital planes of the
binary and the third body. The planes are at an inclination ι relative to each other.
The line of nodes is at an angle � relative to êξ , and êA is at an angle ω relative to
the line of nodes. The angle between the two base vectors is θ1.

where î , ĵ and k̂ are the unit vectors of a rectangular coordinate system. Unit vector
î points along the line of nodes (Fig. 10.5).

Now we go back to Eqs. (10.40) and (10.41). Vector products of Eq. (10.42)
have to be calculated again using Eq. (10.87). We start by calculating

êA · êξ = cos θ1 = cos ω cos � − sin ω sin � cos ι

= cos(ω − �) − sin ω sin �(1 + cos ι),

êB · êξ = cos θ2 = − sin ω cos � − cos ω sin � cos ι

= − sin(ω − �) − cos ω sin �(1 + cos ι),

êA · êη = cos θ3 = cos ω sin � + sin ω cos � cos ι

= − sin(ω − �) + sin ω cos �(1 + cos ι),

êB · êη = cos θ4 = − sin ω sin � + cos ω cos � cos ι

= − cos(ω − �) + cos ω cos �(1 + cos ι).

The θ are the angles between the unit vectors. For example, θ1 is the angle between
vectors êA and êξ , êA · êξ = cos θ1 (Fig. 10.5).
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With the help of these products and Eq. (10.41) we write the expressions equiv-
alent to Eq. (10.42):

êξ · êr = a

R3
(cos E − e) cos θ1 + b

R3
sin E cos θ2,

êζ · (êξ × êr )êη · êr = a

R3
(cos E − e) cos θ3 + b

R3
sin E cos θ4,

êη · êr = a

R3
(cos E − e) cos θ3 + b

R3
sin E cos θ4,

êζ · (êη × êr ) = −êξ · êr − a

R3
(cos E − e) cos θ1 − b

R3
sin E cos θ2.

(10.88)

As before we assume that the terms containing sin E may be neglected in com-
parison with the terms containing cos E − e since the (a/R3)5 factor in our integral
peaks strongly at E = 0 where the sin E terms go to zero. This effectively drops
the second terms out on the right hand sides of Eq. (10.88). Thus Eq. (10.40) is
modified to

êζ · (r × f ) = − 3Gm3a2
i

a3

(
a

R3

)5 1

2
(cos E − e)2

× [A1 cos 2φ + A2 sin 2φ] ,

(10.89)

where

A1 = −2 cos θ1 cos θ3

= sin[2(ω − �)] + sin2 ω sin 2�(1 + cos ι)2

− 2 sin ω cos(ω − 2�)(1 + cos ι),

A2 = cos2 θ1 − cos2 θ3

= cos[2(ω − �)] − sin2 ω cos 2�(1 + cos ι)2

+ 2 sin ω sin(ω − 2�)(1 + cos ι).

(10.90)

Putting 2φ = k M + 2φ0 Eq. (10.55) becomes∫ M0

0
êζ · (r × f ) dM =3Gm3

a3
a2

i

× (I (1)[A1 cos 2φ0 + A2 sin 2φ0]

+ I (2)[−A1 sin 2φ0 + A2 cos 2φ0]
)
.

(10.91)

Since
∣∣I (1)

∣∣� ∣∣I (2)
∣∣, the terms proportional to I (1) may be ignored. Therefore

the product cos2 ι cos 2φ0 in Eq. (10.72) is replaced by

−A1 sin 2φ0 + A2 cos 2φ0.

Rather than using A1 and A2 with their full dependence on ω, � and ι, let us
do some averaging. We may take the attitude that we do not really care which
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Figure 10.6 A comparison of the expected |�| ≈ (1 + cos ι)4 dependence with
experimental data from Huang and Valtonen (1987) at Q = 2.5.

way the major axis of the outer orbit points, and similarly we consider the line of
nodes to be randomly placed in the binary orbital plane. Then the average values
of sin 2(ω − �), cos 2(ω − �), sin ω sin(ω − 2�) and sin ω cos(ω − 2�) are zero
while 〈sin2 ω〉 = 1

2 . What remains is

− 〈A1〉 sin 2φ0 + 〈A2〉 cos 2φ0 = −1

2
cos 2(φ0 − �)(1 + cos ι)2. (10.92)

(A different calculation is given as an exercise, Problem 10.10.) To be exact, also
the cos 2(φ0 − �) factor averages to zero when � is arbitrary. We have kept it,
however, to show that the inclination dependence is more likely to be a function
of (1 + cos ι)2 rather than of cos2 ι. It is reasonable that our result should depend
on φ0 − � since both angles φ0 and � are measured from the ξ axis which itself
has no physical significance for a circular binary. The only physically significant
quantity is their difference φ0 − �. In the second order theory we have to square
this factor, as we will see in the next section, and thus we expect the energy change
in a slow encounter to be proportional to (1 + cos ι)4. Figure 10.6 shows that this is
indeed a good approximation (Huang and Valtonen 1987). However, the amplitude
of the sinusoidal variation of � comes from the first order theory and therefore it
is of the order of (1 + cos ι)2 only (Eq. (10.84)).
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10.5 Change in eccentricity

The change in the binary eccentricity ei may be calculated by using Eq. (9.8). Since
the binary orbit precesses slowly in comparison with the orbital motion, we may
write

∂ R

∂ω
� ∂ R

∂ M

in Eq. (9.8). Therefore

ėi = 1

2

(1 − e2
i )

ai ei
ȧi (10.93)

or

�ei = 1

2

1 − e2
i

ei
�.

Initially ei = 0; therefore its typical value is ei ≈ 1
2�ei . As long as it is small,

1 − e2
i ≈ 1. Thus

(�ei )
2 ≈ |�|. (10.94)

This expectation agrees well with numerical experiments (Huang and Valtonen
1987). They show that (�ei )2 varies sinusoidally (with period π ) about a non-zero
mean value (Valtonen 1975b), as expected.

To be more quantitative, let us move onto the calculation of the ė term in
Eq. (10.20). It leads to a theory for the mean energy change 〈�〉. First we need an
expression for �ei . The change in eccentricity �ei is calculated in a manner simi-
lar to the calculation of �ai/ai . We use Eqs. (10.20), (10.31)–(10.32) and (10.34),
substitute φ for E , ai for a and b and put e = 0. In addition, we use Eq. (10.88)
where we neglect the sin E terms as small in comparison with the cos E − e terms,
as we did previously. Then

ėi = −3
m3

m B

√
Gm B

R3
3

a3/2
i

×
[(

a

R3

)2

(cos E − e)2(cos2 θ1 − cos2 θ3) sin φ cos2 φ

− 2

(
a

R3

)2

(cos E − e)2 cos θ1 cos θ3 cos3 φ

−
(

a

R3

)2

(cos E − e)2 cos2 θ3 sin φ + 1

3
sin φ

]
.
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The integral of ėi over the whole pericentre passage is

�ei =
∫ t0

−t0

ėi dt = a3/2

√
G(m B + m3)

∫ M0

−M0

ėi dM.

The integral is split into several terms by using the identities

sin φ cos2 φ = 1

4
(sin φ + sin 3φ),

cos3 φ = 1

4
(3 cos φ + cos 3φ),

sin φ = sin
k

2
M cos φ0 + cos

k

2
M sin φ0,

cos φ = cos
k

2
M cos φ0 − sin

k

2
M sin φ0,

sin 3φ = sin
3

2
k M cos 3φ0 + cos

3

2
k M sin 3φ0,

cos 3φ = cos
3

2
k M cos 3φ0 − sin

3

2
k M sin 3φ0.

However, we know from the experience gained in Section 10.3 that the terms
proportional to cos 1

2 k M and cos 3
2 k M are going to be small compared with the

sin 1
2 k M and sin 3

2 k M terms, and the former may be neglected. Thus

�ei = 3

2
√

2

√
2m B

m B + m3

m3

m B

(ai

a

)3/2
∫ M0

−M0

[
− 2

3

(
a

R3

)3

sin
k

2
M cos φ0

− 1

2

(
a

R3

)5

(cos E − e)2(cos2 θ1 − 5 cos2 θ3) sin
k

2
M cos φ0

− 1

2

(
a

R3

)5

(cos E − e)2(cos2 θ1 − cos2 θ3) sin
3

2
k M cos 3φ0

− 3

(
a

R3

)5

(cos E − e)2 cos θ1 cos θ3 sin
k

2
M sin φ0

−
(

a

R3

)5

(cos E − e)2 cos θ1 cos θ3 sin
3

2
k M sin 3φ0

]
dM.

The integrals consist of two segments: from −M0 to 0 and from 0 to M0. Between
the two segments φ0 changes its sign in order that the two orbit solutions match
each other at M = 0. The integrals are antisymmetric relative to M = 0; that means
that the terms containing cos φ0 or cos 3φ0 are antisymmetric, and add up to zero
when integrated from −M0 to +M0. The terms containing sin φ0 and sin 3φ0 are
symmetric and make equal contributions to both segments (Fig. 10.7).

The integrals which we need to evaluate are the familiar I (2) (Eq. (10.57)), now
calculated at k/2 and 3k/2 instead of k. Let us call these values I (2)(k/2) and
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Figure 10.7 The outward path (I) and the inward path (IV) and how they are
obtained from each other by three transformations. Transformation I→II changes
φ0 → −φ0 which leaves cos φ0 unchanged. Transformation II→III is simply a
left-to-right flip, while in the transformation III→IV the time is reversed, i.e.
M → −M . This leads to I (2) → −I (2), Eq. (10.58). Thus for terms proportional
to cos φ0 or cos 3φ0 the eccentricity change �ei in the inward path is equal in
magnitude to the eccentricity change in the outward path but opposite in sign. In
contrast, the terms proportional to sin φ0 or sin 3φ0 add up from the two paths.

I (2)(3k/2), respectively. Then

I (2)(k/2) = 1

50

1

k

5∑
n=1

Bn

[
1 −

(
2n

k

)2
]−1 [

cos

(
8πn

k

)
− 1

]
,

I (2)(3k/2) = 1

150

1

k

8∑
n=1

Bn

[
1 −

(
2n

3k

)2
]−1 [

cos

(
8πn

3k

)
− 1

]
.

At k = 12 a straightforward calculation gives I (2)(k/2) ≈ −0.25 and I (2)(3k/2) ≈
−0.06. The latter value is small enough that it may be ignored in comparison with
the former. Numerical evaluation of the sums shows that this is reasonable for k > 8,
and especially for higher values of k, e.g. for k > 27, I (2)(k/2) > 10I (2)(3k/2). The
value of I (2)(k/2) may be taken as a constant in the range 8 < k ≤ 30.

Then

�ei = 3 · 0.25√
2

√
2m B

m B + m3

m3

m B

(ai

a

)3/2
6 cos θ1 cos θ3 sin φ0

≈ −3

√
2m B

m B + m3

m3

m B

(ai

a

)3/2
A1 sin φ0.
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The coefficient A1 is given by Eq. (10.90); when averaged over ω

A1 = 1

2
sin 2�(1 + cos ι)2.

Finally we need 〈(�ei )2〉, averaged over all � and φ0:

〈
(�ei )

2
〉 = 0.025

(
m3

m B

)2 ( Q

2.5

)−6

(1 + cos ι)4, (10.95)

where we have made use of Eq. (10.52) for ai/a and have multiplied the right hand
side by 12/k (Eq. (10.68)) in order to make the expression valid for all Q.

Combining numerical data with theory we get finally

〈
(�ei )

2
〉 = 0.016

(
m3

m B

)2 (
1 + m3

m B

)2/3 ( Q

2.5

)−8

(1 + cos ι)4. (10.96)

Note that the power n in (Q/2.5)−n is higher than what is expected from
Eq. (10.95). The semi-experimental expression of Eq. (10.96) is valid only in the
range 0◦ ≤ ι ≤ 60◦; at other inclinations it becomes more complicated.

We may now return to the second term in the change of the binary energy
(Eq. (10.20))

〈�〉 =
〈
�ai

ai

〉
=
〈

2ei�ei

1 − e2
i

〉
≈ 〈(�ei )

2
〉

if ei ≈ 1
2�ei . This is a second order term since in the first order ei = 0.

There is a complication in the the second order theory. The mean energy change
varies its sign between direct and retrograde orbits. While 〈�〉 is negative for direct
orbits, it becomes positive for retrograde orbits. At intermediate inclinations 〈�〉
is positive at small Q and at some value Q = Q0 it crosses the 〈�〉 = 0 line and
becomes negative. Typically Q0 ≈ 2/3Q1. This behaviour may be modelled by
using a (Q − Q0) factor as a multiplier in the expression for 〈�〉.

The results based on numerical experiments are best described in piecewise
manner in different ranges of inclination. In the range 90◦ ≤ ι ≤ 150◦ the amplitude
A(�) always dominates over 〈�〉 and the values of 〈�〉 are relatively small. In this
range we may thus put effectively 〈�〉 = 0. In the remainder of the retrograde range
we may write

〈�〉 = 0.11 f2(m3)

(
Q

2.62

)−6

cs2(ι), (10.97)
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where

f2(m3) =
(

m3

m B

)2+7.5(1+cos ι)/[(
1 + m3

m B

)/
2

]10(1+cos ι)

, (10.98)

cs2(ι) = 0.136

[
0.38

(
1 + m3

m B

)−0.45

− (1 + cos ι)

]2

. (10.99)

For direct orbits the equation is of the form

〈�〉 = −0.11 f2(m3)(Q − Q0)

(
Q

2.62

)−n2

cs2(ι), (10.100)

where

Q0 = 1.98

(
m3

m B

)0.11 (
1 + m3

m B

)0.155

, 0.5 ≤ cos ι ≤ 1,

Q0 = (1.54 + 0.21 cos ι)

(
1 + m3

m B

)0.4

, 0 ≤ cos ι ≤ 0.5,

(10.101)

and

n2 = 10, 0.5 ≤ cos ι ≤ 1,

n2 = 9 + 2 cos ι, 0 ≤ cos ι ≤ 0.5,
(10.102)

f2(m3) =
(

m3

m B

)2 (
1 + m3

m B

)−0.5

, 0.5 ≤ cos ι ≤ 1,

f2(m3) =
(

m3

m B

)4/3 (
1 + m3

m B

)7/8

, 0 ≤ cos ι ≤ 0.5,

(10.103)

cs2(ι) = 1.4
[
0.5(m3/m B)1/2 + ((1 + cos ι)/2)2

]20/7
, 0.5 ≤ cos ι ≤ 1,

cs2(ι) = 0.55[0.27 + 1.35 cos ι]

× [0.5(m3/m B)1/2 + ((1 + cos ι)/2)2
]2n2/7

, 0 ≤ cos ι ≤ 0.5.

(10.104)
A comparison of numerical data with the above equations is shown in Figures

10.8 and 10.9.

10.6 Stability of triple systems

Up to now the notion of stability has been used in relation to only one pericentre
passage. Often it is more interesting to know what happens after many pericentre
passages when the third body approaches the binary repeatedly. Obviously, a more
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and at 180◦ (�). The curves follow Eqs. (10.80)–(10.86). The case of m3 = m B .

-0.2
-0.15

-0.1
-0.05

0
0.05
0.1

0.15

1 1.5 2 2.5 3 3.5

D
el

ta
E

/E

Q

Mean energy change at m3=1

i=0
60

90

120

180
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Q at several inclinations: ι = 0◦ ( ), 60◦ (�), 90◦ ( ), 120◦ (×) and at 180◦ (+).
The curves follow Eqs. (10.97)–(10.104). The case of m3 = m B .

stringent stability limit, i.e. a greater value of Q, is needed to guarantee stability.
The stability may also be defined in different ways which give slightly different
results.

Let us start by defining stability so that for a stable orbit the relative energy change
should be no greater than 10−3 in either direction during a single pericentre passage.
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This corresponds to the survival of the triple system for 105 revolutions of the outer
binary, according to the following estimate. If the destabilising level of accumulated
relative energy change is 10−1/2, and the energy change accumulates in the manner
of a random walk (Huang and Innanen 1983), then the destabilising level is achieved
after

(
10−1/2/10−3

)2 = 105 steps. The random walk type behaviour of the energy
changes is due to the phase factor cos 2φ0 in Eq. (10.73). Generally successive
encounters take place with different values of φ0, the latter being distributed more
or less randomly. Equation (10.73) has also a constant (independent of φ0) drift
factor which may be dominant depending on the inclination. However, numerical
experiments (Saslaw et al. 1974) have shown that once the eccentricity ei has
increased to about ei = 0.2, the drift becomes insignificant in comparison with the
random walk. Equation (10.96) shows that the eccentricity goes over this limit quite
easily at moderate values of Q.

For example,
〈
(�ei )2

〉 ≈ 0.0016 at Q = Qst(A(�) = 10−3), when m3 = m B .
Then it takes about 25 steps for e2

i to go over the limit of e2
i = 0.04.

When we extend the theory to small values of �, i.e. to large Q, we have to take
account of the exponential factor. It makes the power law Q−n steeper the greater
is the value of Q. For the relative energy change � = 10−3 the suitable effective
power is 11 (Valtonen 1975b).

Therefore the power of the mass and inclination factors in Eq. (10.76) should
be lowered from 1/3 to ≈ 0.09. Using numerical experiments we further refine the
expression and get a new stability limit, suitable for all inclinations:

Qst(A(�) = 10−3) = 3.62 [(1 + m3/m B)/2]0.23

(
m3

m B

)0.09

× [1.035 + cos ι]0.18 .

(10.105)

Figure 10.10 shows that this gives a good description of the stability boundary.
Figure 10.10 also demonstrates that the stability limit based on the drift |〈�〉| at
the level of 10−3 is about equal to or less than the limit derived above from the
amplitude A(�). Thus the contribution of the drift to the stability boundary can
generally be ignored. Only at small inclinations and close to ι = 180◦, and as long
as ei stays small, does the drift become important.

Less stringent stability criteria have also been used. One may require that in
100 revolutions of the outer orbit there is no major orbital change (Mardling &
Aarseth 1999), or that within some specific number of revolutions of the original
outer orbit there should be neither exchanges of the binary members nor escapes
of any of the bodies (Huang and Innanen 1983 use the revolution number N = 62,
Eggleton and Kiseleva 1995 use N = 100); sometimes the survival through an
even smaller number (10–20) of revolutions has been considered to be enough for
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line). The analytical function for the former is drawn as a dashed line. The mean
value changes its sign from positive to negative at cos ι ≈ −0.375 when going
from −1 to +1 along the cos ι axis. The case of m3 = m B .

stability (Harrington 1972, 1975). However, the results are not very different even
though the chosen revolution number N varies a lot. This is because in a random
walk with a constant energy step, in order to cover a standard magnitude change
in energy,

√
N = const Q11, i.e. the stability limit Qst varies only as the 1/22nd

power of N .
The stability limit also depends on the strength of binding of the outer binary to

the inner binary. If the outer binary is initially only very loosely bound, then even
a small positive energy increase at the pericentre may set it loose. The degree of
relative binding is best described by the axial ratio ai/a, or since Q = (a/ai )(1 − e),
by (1 − e)/Q. Putting this relative binding equal to the relative energy change
|�| ∝ Q−11, i.e. setting |�| = �EB/EB ≈ Eouter/EB ≈ (1 − e)/Q, we find that
the stability limit varies as

Qst ∝ (1 − e)−α (10.106)

where α = 0.1. Actually, putting α as 0.3–0.4 gives a better agreement with some
experiments (see Fig. 10.11; Huang and Innanen 1983, Mardling and Aarseth 1999)
while in others α � 0.0 (Eggleton and Kiseleva 1995); the results depend on the
definition of stability and on the masses of the bodies.

The experimental value for the stability limit for equal masses m1 = m2 =
m3, e = 0 and cos ι = 1 is Q = 2.7 after N = 62 revolutions (Huang and
Innanen 1983). With these parameters A(�) gives the value 0.03 which becomes
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Figure 10.11 A comparison of Eq. (10.107) with experimental data from Huang
and Innanen 1983 (+) and Mardling and Aarseth 1999 (�).

�EB/EB = 0.23 after multiplication by
√

62. This is just at the relative energy
change usually associated with instability (i.e. ≈ 0.2) and thus the stability limit
of Huang and Innanen (1983) is as expected. The stability limit of Mardling and
Aarseth (1999) for the same case is Q = 3.65 which seems contradictory. At this
pericentre distance we expect the average energy change per revolution to be 0.003
which is multiplied by

√
100 and adds up to 0.03 after 100 revolutions. This is

only about 10% of the value at the stability boundary. However, in Mardling and
Aarseth (1999) the stability criterion was such that two orbits initially differing by
one part in 105 in the eccentricity should remain close after 100 orbits. |�EB/EB |
being at about 10% of the stability limit could well be used as a definition for two
nearly identical orbits not to have evolved too far apart from each other and for the
system to be stable. The corresponding stability limit of Bailyn (1984), Q = 3.1,
lies between the previous two, and it appears that the definition of instability is
also intermediate between those of Huang and Innanen (1983) and Mardling and
Aarseth (1999).

So far we have not considered the possibility that the inner binary orbit may be ec-
centric. In the first approximation we may take the time averaged mean separation
r = ai [1 + 0.5e2

i ] in place of ai in our perturbation equations. Then the stabil-
ity limits obtained earlier are simply multiplied by r/ai since the inner binary is
effectively this much greater in extent, and the encounter has to be more distant by
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the same factor for stability. In practice it appears that this method gives reasonable
agreement with numerical experiments (Bailyn 1984).

Even though there are obviously many different ways to define stability, and
correspondingly many possible stability limits, it appears safest to use Qst as defined
by orbit calculations:

Q(2)
st = 2.8

(
1 + m3

m B

)1/6

(1 − e)−0.1

×
(

1 + 1

2
e2

i

)[
1

3
+ ((1 + cos ι)(1.97 − cos ι))0.8

]1/3
(10.107)

This expression has been found to be quite satisfactory in numerical experiments
in the ‘random walk range’ −0.9 ≤ cos ι ≤ 0.6 (Valtonen et al. 2006) for the stabil-
ity of N = 1000 revolutions when the stability is defined in the manner of Huang
and Innanen (1983).

Here we must remember the Kozai resonance which operates effectively at
inclination angles close to ι = π/2. The inner eccentricity grows up to values
close to ei = 1 which means that the factor 1 + 0.5e2

i is best replaced by 1.5 in
Eq. (10.107) for these inclinations, independent of the original eccentricity ei

(Miller and Hamilton 2002, Wen 2003).

Example 10.1 A large number of stars are found in triple systems many of which
appear to be stable in the sense that the pericentre of the outer orbit is far beyond
Q(2)

st . How do they originate?
Besides the obvious possibility that triple stars were born like this, we may

consider evolutionary processes which add a third star to a binary. A star passing
by a binary in a retrograde orbit is likely to lose energy and may become bound
to it. However, its relative pericentre distance Q remains small, and subsequent
encounters are likely to reduce it further until a resonance forms and leads to an
escape. Is there anything that might alter this evolution and make a stable triple
star? In the capture process the eccentricity of the binary is increased and it may
happen that the increase is enough to make two stars of the inner binary touch
or almost touch each other at the pericentre of the orbit. Then tidal dissipation
of the orbital energy makes the inner binary shrink, and effectively Q increases
for the outer binary to the extent that the triple is stable. Some triples must have
followed this evolutionary path (Bailyn and Grindlay 1987, Bailyn 1987, 1989). A
more efficient process is a binary–binary interaction. Then we may regard the more
compact binary as a single point which interacts with a wider binary. One of the
members of the wide binary is likely to escape and what remains is a hierarchical
three-body system. It may be stable or unstable. Numerical simulations by Mikkola
(1983, 1984a, b) indicate a large probability for forming stable triples in this way.
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Figure 10.12 The third body passes the binary centre of mass at the distance q with
a constant speed V and is located at the position R at time t after the pericentre
passage. The orbital plane of the third body is at an angle ι relative to the orbital
plane of the binary (horizontal plane). The unit vector êA points from the binary
centre of mass towards the pericentre.

10.7 Fast encounters

Fast encounters imply that the outer orbit is so strongly hyperbolic that we may use
a straight line approximation for the relevant segment of the third-body orbit. To
simplify the calculation further, assume that the binary is at a constant phase angle
φ during the third-body passage. Since most of the action takes place close to the
pericentre this impulsive approximation may be quite appropriate. The geometry
of the encounter is illustrated in Fig. 10.12. Let q be the closest approach distance
of the third body to the binary centre of mass, and let V be the uniform speed of
the third body in its straight line orbit. Then

R = q êA + V t êB . (10.108)

Here the unit vectors êA and êB point from the binary centre of mass towards the
pericentre point of closest approach and along a line parallel to the orbital motion,
respectively. As before, t is the time, with t = 0 at the pericentre. The magnitude
of R is

R =
√

q2 + V 2t2 (10.109)

and the corresponding unit vector is

êr = q

R
êA + V t

R
êB . (10.110)
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In order to calculate the relative energy change during the pericentre passage we
proceed as before. The required quantities are:

êξ · êr = q

R
cos θ1 + V t

R
cos θ2,

êη · êr = q

R
cos θ3 + V t

R
cos θ4,

êζ · (êξ × êr ) = êη · êr = q

R
cos θ3 + V t

R
cos θ4,

êζ · (êη × êr
) = −êξ · êr = − q

R
cos θ1 − V t

R
cos θ2,

(10.111)

which are substituted into Eq. (10.40). In writing this equation it was assumed that
the inner eccentricity ei = 0, and that the binary separation is ai . In the case of
an eccentric binary we could use the time averaged mean separation ai (1 + 0.5e2

i )
instead of ai ; this would lead to a correction factor (1 + 0.5e2

i ) on the right hand
side of the next equation and in subsequent equations. We get

êζ · (r × f ) = 3Gm3a2
i

R5

[(
q2 cos θ1 cos θ3 + V 2t2 cos θ2 cos θ4

+ qV t(cos θ2 cos θ3 + cos θ1 cos θ4)
)

cos 2φ

+
(

1

2
q2(cos2 θ3 − cos2 θ1) + 1

2
V 2t2(cos2 θ4 − cos2 θ2)

+ qV t(cos θ3 cos θ4 − cos θ1 cos θ2)

)
sin 2φ

]
.

(10.112)
To integrate from t = −∞ to t = ∞, the integrals needed are

I1 =
∫ ∞

−∞

qV t dt

(q2 + V 2t2)5/2
= −

∣∣∣∣
∞

−∞

q

3V (q2 + V 2t2)3/2
= 0,

I2 =
∫ ∞

−∞

q2 dt

(q2 + V 2t2)5/2
=
∣∣∣∣
∞

−∞

1

2

(
1 + 2

3

V 2t2

q2

)
t

(q2 + V 2t2)3/2

= 2

3q2V
,

I3 =
∫ ∞

−∞

V 2t2 dt

(q2 + V 2t2)5/2
=
∣∣∣∣
∞

−∞

V 2t3

3q2(q2 + V 2t2)3/2
= 2

3q2V
= I2.

(10.113)
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Therefore∫ ∞

−∞
êζ · (r × f ) dt = −3Gm3a2

i

2

[
(A1 I2 + A3 I3) cos 2φ

+(A2 I2 + A4 I3) sin 2φ
]

(10.114)

= −Gm3a2
i

q2V

[
(A1 + A3) cos 2φ + (A2 + A4) sin 2φ

]
.

The coefficients A1 and A2 were previously defined (Eq. (10.90)):

A1 = − 2 cos θ1 cos θ3

= sin 2(ω − �) + sin2 ω sin 2�(1 + cos ι)2

− 2 sin ω cos(ω − 2�)(1 + cos ι),

A2 = cos2 θ1 − cos2 θ3

= cos 2(ω − �) − sin2 ω cos 2�(1 + cos ι)2

+ 2 sin ω sin(ω − 2�)(1 + cos ι).

(10.115)

The two other coefficients are

A3 = − 2 cos θ2 cos θ4

= − sin 2(ω − �) + cos2 ω sin 2�(1 + cos ι)2

+ 2 cos ω sin(ω − 2�)(1 + cos ι),

A4 = cos2 θ2 − cos2 θ4

= − cos 2(ω − �) − cos2 ω cos 2�(1 + cos ι)2

+ 2 cos ω cos(ω − 2�)(1 + cos ι).

(10.116)

As before, we may simplify the result considerably by averaging over ω and
by keeping only the terms proportional to (1 + cos ι)2 which contain the sin2 ω or
cos2 ω coefficients explicitly. Then

〈A1 + A3〉 = sin 2�(1 + cos ι)2,

〈A2 + A4〉 = − cos 2�(1 + cos ι)2.
(10.117)

We use Eq. (10.70) and obtain finally

�ai

ai
= 2

√
Gm Ba3/2

i

q2V

(
m3

m B

)
(1 + cos ι)2 sin 2(φ − �). (10.118)

Averaged over all phases φ − �, to the first order there is no net change in ai

during the pericentre passage.
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Figure 10.13 The average change of eccentricity as a function of Q. Experimental
points are from Hills (1984): V/v0 = 0.034 (+), 3.19 (×) and 10.37 ( ). The lines
refer to Eq. (10.95) (slope −3; cos ι = 0.44) and to Eq. (10.121) (slope −2). The
horizontal line corresponds to the average value from Eq. (7.14), 〈e〉 = 0.67.

What about the contribution of the second term in Eq. (10.12)? It gives

�EB

EB
= −2ei�ei

1 − e2
i

≈ −(�ei )
2 (10.119)

if ei is small and typically ei = 1
2�ei .

After a somewhat lengthy calculation we find, averaging over inclinations and
binary phases,

〈
(�ei )

2
〉1/2 ≈

√
2Gm Ba3/2

i

q2V

(
m3

m B

)
. (10.120)

Note that �ei now depends on Q−2 ≡ (q/ai )−2, which is less steep than the
Q−3 slope in slow encounters (Eq. (10.95), see Fig. 10.13). Using v2

0 = Gm B/ai
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(Eq. (8.8)), V = v∞, the definition of v from Eq. (8.11) and Q = q/ai we get

(�ei )
2 = 0.10

m3
3

2Mmamb

1

v2

(
Q

2.5

)−4

, (10.121)

which gives the relative energy change by Eq. (10.119). Notice that the sign of
�EB/EB is now negative, since �EB/EB ≈ −(�ei )2. This of course is true only
on average, but for the remainder of this section we are satisfied to work at the level
of averages.

Then

� = −�EB

EB
≈ 2m3

3

Mmamb

1

v2 Q4
. (10.122)

Again Eq. (10.122) has a different Q-dependence from the slow encounters: the
−6 power of Eq. (10.95) has changed to a −4 power of Q. Also the sign of �

is different from 〈�〉 of the slow encounter case at direct orbits. This is shown in
Fig. 10.14 where the theory is compared with experiments.

In order to arrive at cross-sections, the average result of many encounters with
different impact parameters Q must be calculated. Assume that the passing orbits
impact an area π Q2

max randomly where Qmax is the most distant encounter that
interests us. Its value is a matter of definition; from numerical work we know that
taking Qmax ≈ √

2 will give a rather complete coverage of the energy change |�| of
the order of 0.1 or greater at high incoming velocity (v ≈ 4 − 8, Hut and Bahcall
1983). In this case the geometrical cross-section � = 2πa2

i . The distribution of
Q-values within this area is

f (Q) = 2Q (10.123)

since the annuli of width Q have areas proportional to Q.
At this point a simplifying assumption, not strictly true, is made that at each

encounter distance Q energy changes of a definite value � are produced according
to Eq. (10.122). Remember that this result only applies to average energy changes,
and therefore we are replacing the distribution of � at each Q by its average value.
However, this opens up a simple way forward, and the final result can be checked
by comparison with numerical experiments. Adopting this approach,

f (�) = f (Q)
dQ

d�
≈ 1

2

(
2m3

3

Mmamb

)1/2
1

v�3/2
. (10.124)

When multiplied by the geometrical cross-section �, the differential cross-section
follows:

dσ

d�
≈

√
2

(
m3

3

Mmamb

)1/2
πa2

i

v�3/2
. (10.125)
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Figure 10.14 The relative energy change −� in slow encounters (positive side
of the y axis) and in fast encounters (negative side of the y axis). The values of
V/v0 are 0.034 (+), 3.18 (×) and 10.37 ( ). The data are from Hills (1984) and
the theoretical curves from Eq. (10.96) (cos ι = 0.5) and from Eq. (10.122). The x
axis is b/a0 for fast encounters which is slightly different from Q due to focussing.
For slow encounters Q is used as the x axis.

In Fig. 10.15 a comparison of this result with experiments (Heggie and Hut 1993)
shows a very good agreement.

The present discussion is based on an impulsive encounter between the third
body and the binary as a whole, assuming that the third body does not come very
close to either of the binary members. If it does come close we should use the theory
of Section 6.8 (Eq. (6.79)) which gives

dσ

d�
= 32

9

(
3m3

3

Mmamb

)
πa2

i

v2|�|3 . (10.126)

At small |�| this is valid for both positive and negative �, and therefore the cross-
sections to either direction are equal and the cross-section for the net change � is
zero. At |�| > 1 positive changes dominate and eventually at |�| � 1 Eq. (10.126)
represents the cross-section for the net change (Heggie 1975, Heggie and Hut 1993).
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Figure 10.15 A comparison of Eq. (10.125) with experimental data from Heggie
and Hut (1993). (e = 0, positive energy changes). The values of normalised speed
are v = 2 (�), v = 4 (+) and v = 8 (�). The ordinate is (dσ/d�)/πa2

i .

Therefore we expect that at some point along the � axis there should be a
transition from the |�|−3/2 power-law derived from the perturbation theory to the
|�|−3 power-law which comes from close encounters. Figure 10.16 shows that
the |�|−3/2 power-law holds well up to |�| ≈ 1 if we consider the cross-section
for the net change (negative–positive). Above |�| = 1 the negative changes agree
with Eq. (10.126). For positive changes |�| > 1 means dissociations of the binaries
(ionisations), and if we discount them, the cross-section for negative � represents
the net change.

Another way of looking at the scattering is to study the change in v as a result
of the encounter. This is especially useful in the case of ionisation. Then it is more
significant to speak of the change in the speed of the third body, relative to the
centre of mass of the two others, than of the change in the binary energy. Let the
final value of the normalised speed be v f . Then it is easy to see that

� = v2 − v2
f ≈ 2v(v − v f ) (10.127)

since typically v f is not very different from v. The cross-section for v f ending up
in the interval [v f , v f + dv f ] is (in the regime of Eq. (10.126))

dσ

dv f
= dσ

d�

d�

dv f
≈ 8

9

πa2
i

v4(v − v f )3
. (10.128)

This gives a good description of numerical experiments where |�| ∼> 1 (Valtonen
and Heggie 1979; see Fig. 10.17).

At v ≈ 1 the experimental cross-section is lower than predicted when � is low
(see Fig. 10.15). The fit is improved if the data from scattering with eccentric
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Figure 10.16 The normalised cross-section (dσ/d|�|)/πa2
i in scattering experi-

ments by Heggie and Hut (1993) at v ≈ 3.4. At |�| < 1, the cross-section is the
difference between the cross-sections for positive � and for negative � while for
|�| > 1 only negative � are included since � > 1 corresponds to ionisation. The
lines are based on Eqs. (10.125) (|�| < 1) and (10.126) (|�| > 1).

binaries are used rather than the zero eccentricity data (Hut and Bahcall 1983).
This is not surprising since our approximation of the constant phase angle φ is best
justified for eccentric binaries. A very eccentric binary spends most of the time
close to the apocentre of the orbit when the line joining the two components is very
close to the major axis of the orbit.

10.8 Average energy exchange

In Section 8.5, the range of energy transfer between binaries and single stars was
discussed, the important quantity being

〈σ�〉 =
∫ ∞

−∞
�

dσ

d�
d�. (10.129)

We call this quantity the average energy exchange.
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Figure 10.17 A comparison of Eq. (10.128) with experimental data from Valtonen
and Heggie (1979). These data correspond to larger values of |�| than in Fig. 10.16
and thus they may be called major scattering. The comparison is presented for equal
mass systems and v∞/v0 = 1.73 (+), 2.45 (×), 3.54 ( ), 5 (�), 7.07 ( ) and 10
(◦). The observational points have been raised by 0.6 units in the log scale for
v∞/v0 = 2.45, by 2 × 0.6 for the next speed, etc. in order that a single theoretical
line of slope −3 applies to all cases. A shallower slope of −1.5 begins at the low
end of the experimental range of v − v f , roughly where v − v f is equivalent to
� = −1 according to Eq. (10.127).

In Section 8.1, dσ/d� was derived for slow approach speeds v (Eq. (8.12) with
a correction factor of Eq. (8.15)). At these speeds, the limits may be taken from
� = 0 to � = ∞. The integration over � is carried out with the help of Eq. (7.54).
For equal masses, the result is

〈σ�〉slow ≈ 2.5(1 − v2)7/2 πa2
0

v2
. (10.130)

For high speeds v, Eq. (10.125) is used and integration is carried out from � = 0
to � = 1/3 since the region of validity of our theory does not generally extend to
higher than � = 1/3. The integration then yields for equal masses

〈σ�〉fast ≈ −πa2
0

v
. (10.131)
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Figure 10.18 Experimental values of 〈σ�〉 /(πa2
0) from Hut and Bahcall (1983)

are compared with the predictions of Eq. (10.131). The dashed line should be
followed up to v ≈ 0.8 and the dotted line for higher v values. The theoretical
lines include a factor for gravitational focussing. The average energy exchange
reverses its sign at v ≈ 0.6 and therefore goes through zero at this point. At low
values of v, scattering tends to make binaries harder (more strongly bound) while
at high values of v they tend to become softer (more weakly bound).

In Fig. 10.18 we show numerical data (Hut and Bahcall 1983) which are in
fairly good agreement with the expectations of the theory if the two regions are
joined at v ∼ 1. In the range 0.6 ∼< v ∼< 1.6, the theoretical energy exchange rate
is not very accurate because neither of the two theoretical approaches is strictly
valid. The theoretical expressions may be improved by adding a correction factor
0.7(1 + 0.59/v)2 for gravitational focussing (Hut and Bahcall 1983) in Eq. (10.131)

This is not the same focussing factor which was derived previously in Section 6.2.
It is less sensitive to the incoming velocity v∞ than the standard expression which
gives the focussing from a very large distance to the binary area. Our expression is
used for comparison with numerical orbit calculations which typically start from
relatively close to the binary; thus here we are concerned with near range focussing
only.

Equation (10.130) is modified also so that the experimentally observed reversal
of the sign of 〈σ�〉 at v ≈ 0.6 is included. This can be achieved by replacing
2.5(1 − v2)7/2 by 2.09

(
1 − (v/0.59)2

)
in Eq. (10.130). It includes also a small
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correction in the asymptotic value as v → 0. Then

〈σ�〉 = −6

(
1 −

(
0.59

v

)2
)

πa2
0, v ≤ 0.8,

〈σ�〉 = −0.7

(
1 + 0.59

v

)2
πa2

0

v
, v ≥ 0.8.

(10.132)

These functions have been drawn in Fig. 10.18, and they improve the agreement
with the experimental data points considerably.

The significance of the ‘watershed’ value v ≈ 0.6 is as follows. The angular
speed of the binary motion is �i = v0/ai and the angular speed of the third body at
the pericentre (distance q from the binary centre of mass) is �0 = v∞/q assuming
a uniform passage speed v∞. For equal masses, the latter is �0 = √

3/4vv0/q. The
two angular speeds are equal when v = √

4/3Q where Q = q/ai . At a ‘grazing’
encounter Q = 1/2, and therefore v = 1/

√
3 ≈ 0.6. At speeds less than 0.6 the

binary turns around faster than the passing third body while the opposite is true for
v > 0.6. The two cases correspond to different orbital senses in a coordinate system
where the binary is stationary. Therefore the average energy exchange reverses its
sign at the ‘watershed’ value. For v ∼< 0.6 the binary contracts (becomes ‘harder’)
while for v ∼> 0.6 the binary expands and becomes ‘softer’. Correspondingly, the
third body gains speed when v ∼< 0.6 and loses speed during the encounter when
v ∼> 0.6. Note, however, that these conclusions apply only to the average energy
exchange. In individual cases the passing body may lose speed even below the
‘watershed’ v = 0.6 and gain speed above v = 0.6, even though the likelihood is
greater for the opposite outcome.

The above discussion can be obviously extended to systems with different
masses. We have previously learnt that different systems are conveniently scaled
according to their stability limit; outside the stability limit the energy change tends
to be in one direction only (positive or negative, depending on the inclination).
Thus we generalise the ‘watershed’ speed by using, instead of v∞/v0 = Q = 1

2 ,

a value which scales with Q(a)
st for the mean energy change 〈�〉 (Eq. (10.100),

putting 〈�〉 = 0.11 and solving for Q as a function of m3/m B when ma/m B � 1
and Q � Q0):

v∞
v0

≈
(

2m3

m B

)1/6

. (10.133)

Numerical experiments by Hills (1990) show that this is a good approximation for
2m3 ≥ m B ; for smaller values of m3, v∞/v0 may be taken as a constant.
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Problems

Problem 10.1 Show that Eq. (10.12) follows from Eq. (10.19).

Problem 10.2 A satellite circles a planet in an elliptic orbit. Its engine produces
a radial acceleration f = αr/r , where α is a constant. Find the effect of this per-
turbation during one revolution.

Problem 10.3 A binary radiates energy in the form of gravitational radiation, and
it is possible to describe the back-reaction of this radiation as a perturbing force on
the binary. In the case of zero eccentricity, the coefficient of ‘drag’ is

α = 32

5

G3m1m2(m1 + m2)

c5a4
,

where m1 and m2 are the binary component masses and a is the orbital radius. The
speed of light is c. Show that the lifetime of the binary is

T = 5

256

c5

G3

a4

m1m2(m1 + m2)
,

if its initial orbital radius is a. Express the lifetime in years if a is in parsecs and
masses in units of 109 M�.

Problem 10.4 The drag coefficient in dynamical friction is (Section 3.14)

α = 4πG2msman ln �/u3,

where ms is the mass of a star (say 1M�), ma is the mass of the secondary body (say
1010 M�) and n is the number density of stars of the primary body at the position
of the secondary, at a distance a from the centre of the primary. The parameter
� ≈ au2/Gma . Assume that the orbit is circular, and that the orbital speed u
is constant, independent of a (say, u = 300 km/s). Show first that in a spherically
symmetric galaxy with a constant circular rotation speed u the local number density
of stars n at distance a is

n = u2

4πGmsa2

and that for ma = 1010 M� and r = 10 kpc

ln � ≈ 3.

Then show that the lifetime of the binary (= binary galaxy) is

tfric ≈ a2u

6Gma
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if a is the original orbital radius. Substitute a in units of 30 kpc, ma in units of
1010 M� to show that

tfric ≈ 109 yr

(
a

30 kpc

)2 ( ma

1010 M�

)−1 ( u

300 km/s

)

and compare it with the orbital period at the original distance a.

Problem 10.5 Show that the force in Eq. (10.21) is derived from the potential of
Eq. (9.12).

Problem 10.6 Show that Eq. (10.31) results from Eq. (10.30).

Problem 10.7 Show that the approximations (10.45)–(10.47) are valid when e =
0.265. Note that the series expansions of Section 3.15 give somewhat different
coefficients due to truncation errors.

Problem 10.8 Plot the sums I (1) and I (2) in Eq. (10.65), and show that I (2) � I (1)

when k > 8. Show that I (2) ≈ −(2.3/k)e−0.04k when 15 ≤ k ≤ 75.

Problem 10.9 Derive the expressions of Eq. (10.87) for the unit vectors.

Problem 10.10 Apply Eq. (10.105) to the Sun–Earth–Moon system. Is the orbit
of the Moon stable? Data: masses, the Sun 2 × 1030 kg, the Earth 6 × 1024 kg, the
Moon 7 × 1022 kg; mean distances from the Earth, the Sun 1.5 × 1011 m, the Moon
4 × 108 m.

Problem 10.11 Show that the inclination factor in Eq. (10.92) would be

1 − cos2 ι

if the averaging is carried out over ω only. Why is this factor less useful than the
(1 + cos ι)2 factor?

Problem 10.12 Starting from the expression for the eccentricity change in a fast
encounter,

�ei = − 3
√

Gm Ba3/2
i

m3

m B

{
1

4
(sin φ + sin 3φ)

[
I2(cos2 θ1 − cos2 θ3)

+ I3(cos2 θ2 − cos2 θ4) + 2I1(cos θ1 cos θ2 − cos θ3 cos θ4)
]

− 1

2
(3 cos φ + cos 3φ)

[
I2 cos θ1 cos θ3 + I3 cos θ2 cos θ4

+ I1(cos θ1 cos θ4 + cos θ2 cos θ3)
]

− sin φ
[
I2 cos2 θ3 + I3 cos2 θ4 + 2I1 cos θ3 cos θ4 − I4

]}
,
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where I4 is

I4 = 1

3

∫ ∞

−∞

dt

(q2 + V 2t2)3/2
= 2

3q2V
= I2,

show that after averaging over ω and � and keeping only the term proportional to
(1 + cos ι)2, �ei becomes

�ei =
√

Gm Ba3/2
i

q2V

m3

m B
(1 + cos ι)2 sin φ,

and that after further averaging over φ and ι Eq. (10.120) follows.

Problem 10.13 The cross-section for ionisation, i.e. for a complete disruption of
the three-body system has been found to be

σion = 40

3

m3
3

Mmamb

πa2
i

v2

(Hut 1983, 1993). Use Eq. (10.126) to derive this result (except for a constant
factor).
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Some astrophysical problems

11.1 Binary black holes in centres of galaxies

Galactic nuclei are regions of high star densities as well as sites of very massive
black holes, at least in many galaxies. For example, the central black hole in our
own Galaxy is thought to be about 2 × 106 M� while the giant elliptical galaxy M87
possesses a dark central body of 3 × 109 M�. The observed masses of these central
objects are typically 1.2 × 10−3 times the mass of the spheroidal stellar component
of their host galaxies (Merritt and Ferrarese 2001).

It is quite likely that there are also supermassive binary black holes in the centres
of some galaxies, based both on theoretical (Saslaw et al. 1974, Begelman et al.
1980) and observational grounds (Komberg 1967, Sillanpää et al. 1988, Lehto and
Valtonen 1996). They result most likely from mergers of galaxies. While the stars
and gas of the two merged galaxies intermingle and form a new single galaxy, the
central black holes remain separate for a long time, perhaps as long as the Hubble
time (Milosavljevic and Merritt 2001). In the currently popular cold dark matter
(CDM) model of cosmology it is believed that merging of galaxies is a common
process (e.g. Frenk et al. 1988). Therefore binary black holes must also be common.
How common they are depends on the interaction of the binary with the surrounding
stars and gas clouds. This interaction may be modelled by a three-body process,
the two binary members plus one star or one gas cloud.

Before the binary black hole stage has been reached, the separate nuclei of the
two galaxies approach each other. In the process their stars are gradually stripped
away until only the black holes with a small retinue of stars bound to them survive.
At this time the black holes (of 109 M� category) are about a0 = 5 pc apart, and
their relative orbit is practically circular, with eccentricity e ≈ 0.1 (Milosavljevic
and Merritt 2001). The orbital speed of the black hole binary is then about 2000
km/s, an order of magnitude greater than the observed typical speed of a star in the
centre of a galaxy.

288



11.1 Binary black holes in centres of galaxies 289

Since the three-body process depends sensitively on the speeds of the stars as
well as on their numbers, let us focus for a detailed model on a definite galaxy M87
which has been well studied (Young et al. 1978). The spheroidal luminous mass
of this galaxy is about 4.5 × 1011 M� and it is surrounded by a much greater dark
matter halo. The latter component is not important here since we are considering
only the centre of the galaxy. The luminous spheroidal mass ML is a useful scaling
parameter; we will use the luminous mass of M87 as a standard of reference:
M∗

L = 4.5 × 1011 M�. The radial velocity dispersion in M87 has been observed to
be σv = 278 km/s in its core of 690 pc in radius while the average mass density in
the 690 pc core has been estimated to be ρ0 = 26M�/pc3 (Young et al. 1978).

The galaxies of different sizes may be parametrised in different ways. In the
system of Young (1976), which is based purely on observations, the length scale
RL of luminous matter and the luminous mass ML scale as ML ∝ R2

L . Thus the
density scales as ρ ∝ ML/R3

L ∝ M−1/2
L , i.e.

ρ0 = 26M�/pc3(ML/M∗
L )−1/2. (11.1)

The velocity scales as σv ≈ (ML/RL )1/2 ∝ M1/4
L , i.e.

σv = 278 km/s (ML/M∗
L )1/4. (11.2)

Since the black hole mass MB H also scales with ML , we have

MB H = 6 × 108 M�(ML/M∗
L ). (11.3)

Note that this is a ‘typical’ black hole mass; there is considerable scatter in the
MB H values. For example, the actually observed black hole mass in M87 is five
times greater than the ‘typical’ value.

The three-body interaction generally leads to the escape of the less massive
bodies (the stars) from the neighbourhood of the binary. The typical escape speed
is the binary orbital speed v0 (Chapter 7). As stars are ejected, the central stellar
density in the galaxy steadily decreases. The evolution is best estimated from N -
body simulations with large N (Milosavljevic and Merritt 2001) but the result may
be justified as follows. An escaped star carries away the energy ≈ 1

2 msv
2
0, where ms

is the mass of the star. This energy is extracted from the binary which has binding
energy |EB | = 1

2Mv2
0, M being the reduced mass of the binary. Therefore the

relative change in the binding energy of the binary per escaped star is

−d|EB |
|EB | = daB

aB
≈

1
2 msv

2
0

1
2Mv2

0

= ms

M . (11.4)

Here aB is the semi-major axis of the black hole binary.
To see how the escape of stars affects the mass density, let us focus on a volume

centred on the binary black hole which contains stellar mass 2M (roughly the
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Figure 11.1 The evolution of the density of stars in the neighbourhood of a binary,
plotted as a function of the semi-major axis of the binary. Data points come from
numerical N -body simulations by Milosavljevic and Merritt (2001; Fig. 8) while
the curves trace the ρ proportional to

√
a evolution. Two mass ratios of the binary

mass to the stellar mass have been used. The evolution starts from approximately
a0 = 100 units and ρ = 150 units.

black hole mass). The radius of this volume is about 70 pc. We thus consider the
interaction between the black holes and a similar amount of stellar matter. The
escape of a single star changes the average stellar mass density of the volume by

dρ

ρ
= ms

2M ≈ 1

2

daB

aB
. (11.5)

The solution of this equation is

ρ = ρ0

a1/2
0

a1/2
B , (11.6)

where a0 andρ0 are the initial values of aB andρ, respectively. This density evolution
has been found in numerical calculations (Fig. 11.1; Milosavljevic and Merritt 2001)
which gives us confidence in using it in the following.
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In Chapter 6 (Eq. (6.27)) an expression for the relative change of the semi-major
axis aB was derived:

daB

aB
= RaπaB

Gρ

u
dt. (11.7)

We may put u = √
3σv for the speeds of the stars (Quinlan 1996), and since v0 � σv,

u/v0 ≈ 0 and Ra ≈ −6.5. Consequently the coefficient Raπ ≈ −20. This dimen-
sionless number is usually called the hardening rate. The remaining factor on the
right hand side

aB
Gρ

u
= a3/2

B

Gρ0

a1/2
0 u

(11.8)

has a constant part

Gρ0

a1/2
0 u

= 4.3 × 10−3(km/s)2 pc/M� × 26M�/pc3 × 10

(a0/pc)1/2 pc1/2 × 278 km/s × √
3

(
ML

M∗
L

)−3/4

= 23(a0/pc)−1/2

pc3/2 × 1010 yr

(
ML

M∗
L

)−3/4

.

(11.9)

We have multiplied ρ0 by 10 since the average density within a radial distance
of 70 pc is this much greater than within the radial distance of 690 pc, in the
expected density law of ρ ∝ r−1 (Milosavljevic and Merrit 2001). Also the

√
3

factor multiplies the observed σv to obtain u. Thus the equation becomes

daB

a5/2
B

= −464(a0/pc)−1/2

pc3/2 × 1010 yr

(
ML

M∗
L

)−3/4

dt (11.10)

which is easily integrated:

−2

3

∣∣∣∣
a

a0

a−3/2
B = −464(a0/pc)−1/2

pc3/2 × 1010 yr

(
ML

M∗
L

)−3/4

(t − t0). (11.11)

Here a0 and a are the initial and final values of aB at times t0 and t , respectively.
Assuming that a0 � a,

a = 1

45

(
a0

pc

)1/3 (ML

M∗
L

)1/2 (1010 yr

t − t0

)2/3

pc. (11.12)

The eccentricity of the binary remains zero if it is initially zero, and increases
only moderately if it starts from a small value (Chapter 6, Eqs. (6.38), (6.39)).
For example, the typical value e0 ≈ 0.1 in the N -body experiments (Milosavljevic
and Merritt 2001) becomes e ≈ 0.27 by the time the semi-major axis has fallen
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by a factor of 10. Therefore the eccentricity evolution is generally not of prime
importance.

However, gravitational radiation from the black hole binary may become quite
important. It carries away binary energy and eventually leads to a collapse of the
binary. The interesting question is the time scale: is it as fast or faster than the
energy loss by three-body interactions, and is it significant within the lifetime of a
galaxy?

The total collapse of a circular binary of initial orbital radius a takes place in
time (Peters 1964, see Problem 10.4)

Tc ≈ 60 × 1010 yr

(
a

pc

)4 [ (109 M�)3

M(m1 + m2)2

]
(11.13)

due to gravitational radiation. Putting m1 + m2 = 6 × 108 M�(ML/M∗
L )

Tc ≈ 1.8 × 1010 yr

(
a

0.2 pc

)4 (m1 + m2

4M
)(

ML

M∗
L

)−3

. (11.14)

This may be compared with the evolution time scale t − t0 due to three-body
interactions:

t − t0 ≈ 0.036 × 1010 yr

(
a

0.2 pc

)−3/2 ( a0

5 pc

)1/2 (ML

M∗
L

)3/4

. (11.15)

The two time scales are equal if

a = 0.1 pc

(
a0

5 pc

)0.09 ( 4M
m1 + m2

)0.18 (ML

M∗
L

)0.68

. (11.16)

This equality happens at

t − t0 ≈ 109 yr

(
a0

5 pc

)0.365 ( 4M
m1 + m2

)−0.27 (ML

M∗
L

)−0.27

. (11.17)

Putting a0 = 5 pc, m1 = m2 and ML = M∗
L , we find t − t0 ≈ 109 yr, i.e. after this

period gravitational radiation takes over and causes a total collapse of the binary
at t − t0 ≈ 2 × 109 yr. This is close to the age of a galaxy (≈ 1010 yr). One only
needs to lower the black hole masses a little below the mean relation in order to
make them survive through the Hubble time. On the other hand, binaries well over
the mean value for the black hole masses may live less than 109 yr. In the absence
of processes other than those discussed above, it appears that there are both robust
binaries which live through the age of the galaxy, and binaries which coalesce.
But as always in astrophysics, there are additional factors which may be important.
These include the gravitational field of the stars, loss cone depletion, gas inflow
and multiple mergers of galaxies.
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The binary evolution is not a pure three-body process since stars interact among
each other as well as with the binary. A simple way to include the star–star interac-
tions is to modify the hardening rate π Ra if necessary. N -body simulations show
that the hardening rate should be effectively lowered by about a factor of three due
to the star–star effects (Quinlan 1996, Milosavljevic and Merritt 2001). Carrying
this factor through the calculations (Problem 11.1) shows that the time scale of
coalescence of the black holes is increased by more than a factor of two.

Not all the stars in the core interact with the binary. Those stars which do inter-
act will be eventually removed either further out or to escape orbits (Zier and
Biermann 2001). These are called loss cone stars since the directions of their
approach velocities lie inside a cone whose base is the three-body interaction area
(see Fig. 7.3). In this way a low density region develops in the distribution of stars
inside the core. Since the black hole binary is able to wander around a bit due
to Brownian motion (from encounters with stars) it effectively covers a region of
about one parsec in radius, and the underdense region in the stellar distribution
is about twice this size. In the end it is the density of stars inside the hole, not
the mean density of the core, which determines the response of the binary to the
surrounding stars. N -body experiments have not yet been carried out far enough in
time to determine reliably how much the density drops in the central hole relative
to the mean density in the core. The experiments by Quinlan and Hernquist (1997)
suggest that the effective mean density may be lowered by a factor of 10–50 due to
the central hole; if this is true then the lifetimes of binaries before coalescence are
increased by an order of magnitude, i.e. the coalescence of a binary is not expected
within the lifetime of a galaxy unless the binary mass is well above the ‘typical’
black hole mass. Yu (2002) finds that the central hole in stellar distribution could
be filled in highly flattened or triaxial galaxies but not in nearly spherical systems.
Therefore it is expected that black hole binaries survive primarily in the latter type of
galaxies.

Another obstacle to the coalescence of binary black holes may come from gas
flow to the binary components. Each component presumably possesses a disk of
gas, its accretion disk. Infall of gas from outside the nucleus will replenish the gas
while some of the disk matter falls into the black holes, thus increasing their mass.
Let us consider how a binary responds to this process.

The angular momentum of the infalling gas has the same origin as the angular
momentum of the black hole binary: the orbital angular momentum of the two
galaxies prior to their merger. Therefore we may assume that the angular momenta
are aligned with each other, and we may restrict ourselves to a planar problem.

Let the two binary components have masses m1 and m2, m1 > m2. Numerical
simulations of gas accretion (Bate and Bonnell 1997, Bate 2000) have shown that
the less massive (and therefore more distant from the centre of mass) black hole
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dm

m2

q3

C.M.

Figure 11.2 A gas cloud of mass dm arrives in a parabolic orbit of pericentre
distance q3 = (M/m2)a(1 + e) relative to the binary centre of mass and collides
with the component of mass m2 when the latter is at the apocentre of its orbit.

receives most of the infalling gas. This tends to equalise the black hole masses if
the amount of accreted gas is comparable to the binary mass.

We assume that a collision between a gas cloud (mass dm) and the less massive
binary component (mass m2) takes place at the apocentre of the binary orbit which
is at the same time the pericentre of the gas cloud orbit. As a result of this, the gas
cloud starts to follow the binary orbit. We further assume that the total mass, excess
energy and excess angular momentum of the gas cloud are passed on to the binary.
We then ask what is the resulting change in the binary orbit (see Fig. 11.2).

The initial orbital energy of the gas cloud is taken to be zero by the definition of
the parabolic orbit. After the collision, the gas cloud takes the orbit of the component
with mass m2. Therefore the change in its orbital energy is

dE ≈ −1

2
dm v2

0,

where v0 is the mean orbital speed of the binary (Problem 11.2). The binary energy
is changed by the amount dV − dE , where dV is the change in the potential energy
of the binary. After a little calculation (Problem 11.3) we find

d|EB |
|EB | ≈

1
2 dm v2

0
1
2Mv2

0

= dm

M .

The semi-major axis

a = Gm1m2

2|EB |
changes accordingly:

da

a
= −d|EB |

|EB | + dm2

m2
≈ −dm

M + dm

m2
≈ 0,
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when m2 � m1 and e = 0. The semi-major axis is expected to stay constant or to
increase during the accretion.

The angular momentum L of the binary is (Eq. (7.11))

L2 = Gm1m2Ma(1 − e2)

while the corresponding angular momentum L2 for mass dm in the binary orbit is

L2
2 = Gm1(dm)2a(1 − e2).

In the parabolic orbit, the angular momentum L1 of mass dm is

L2
1 = 2G(m1 + m2)(dm)2M

m2
a(1 + e).

In the last equation we have put the pericentre distance of the outer orbit equal to
the apocentre distance of the binary:

q3 = M
m2

a(1 + e), (11.18)

and have replaced a3(1 − e2
3) for the outer orbit by 2q3.

Since e2 = 1 − (m1 + m2)L2/(Gm2
1m2

2a),

d(e2) = (1 − e2)

(
−2

dL

L
+
(

2m1 + m2

m1 + m2

)
dm

m2
+ da

a

)
.

The change in the angular momentum of the binary dL = L1 − L2 is (Problem
11.4)

dL

L
=
√
M
m2

(√
2

(1 − e)
− 1

)
dm

M . (11.19)

When substituted above we obtain d(e2). The expression is rather complicated
(Problem 11.5). We get a simpler result by putting da/a = 0 which is justified by
numerical simulations (Fig. 11.3). Then

d(e2) = −2(1 − e2)

√
M
m2

×
[√

2

(1 − e)
− 1 − 1

2

(
1 + m

m2

)√M
m2

]
dm

M
which is < 0 for large values of e and > 0 for small e). Therefore e → e final ≈
0.15 independently of its initial value. If da/a > 0, the eccentricity can grow bigger,
but in no case to a higher value than e ≈ 0.8 (Problem 11.5).
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Figure 11.3 The effect of gas accretion by the relative amount dm on the parameters
of a binary: a semi-major axis, m2/m1 mass ratio and e eccentricity. The error bars
describe the variation resulting from different gas dynamical assumptions. The data
are based on numerical hydrodynamical calculations by Bate (2000; Fig. 6).

This simple model is consistent with gas dynamical calculations (Fig. 11.3; Bate
and Bonnell 1997, Bate 2000). Gas accretion becomes important in the binary black
hole evolution if the amount of gas accreted is comparable to the mass of the binary.
For example, in the time scale of 109 yr, the rate of 1M�/yr would significantly
change the binary orbital parameters, if the binary mass is about 109 M�. The rate of
gas inflow to the centre of M87 has been estimated to be about 1M�/yr (Loewenstein
and Matthews 1987). However, some of the gas may form clouds and form stars
which effectively drop out of the flow (Mathews and Bregman 1978) and it is even
possible that the gas is used up completely in star formation before the flow reaches
the centre (White and Sarazin 1988). Thus it is presently unclear what role the gas
flow plays in the dynamics of binary black holes. The main effect of gas accretion
seems to be the evolution towards equal mass components, while the major axis is
rather unaffected (Fig. 11.3). The effect of spherically symmetric gas accretion is
different: it tends to drive the black holes together towards a merger (Escala et al.
2004). It is not clear whether such a situation can arise in galactic nuclei.

We now come to the fourth complication, multiple mergers of galaxies which
leads to another application of the three-body problem.

11.2 The problem of three black holes

As described above, it is likely that a merger of two galaxies, each with one central
black hole, results in a semi-permanent black hole binary. If the galaxy is rather
massive, it is also likely that it focusses the orbits of other nearby galaxies strongly
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enough to cause yet another merger. Then a third black hole may come to interact
with the binary, and we arrive at the problem of three black holes (Valtonen et al.
1995, Pietilä et al. 1995, Valtonen 1996).

Every now and then it may also happen that two galaxies, each containing a
semi-permanent black hole binary, merge and create a strongly interacting four
black hole system in the nucleus of the merger. In many ways this situation can be
handled as an extension of the three-body problem, and at this level we will also
discuss the problem of four black holes.

The problem of three black holes differs from the general three-body problem
in several ways. To be exact, the three black hole problem requires solutions in
General Relativity theory which are not available at present and probably will
not be for some time in the future. The best one can do now is to apply a modified
Newtonian theory, the so-called Post-Newtonian formalism. In practice, it is enough
to modify Newton’s laws only at close encounters between two bodies; even at
this approximation the force law between the two close bodies becomes rather
complicated (Valtonen et al. 1995). Because of the chaotic nature of the three-body
orbits, a further simplification is justified: the other deviations from the 1/r2 force
law, such as terms leading to the relativistic precession of the two-body orbit, may
be neglected, except for the term relating to gravitational radiation. The loss of
energy and angular momentum from the system via gravitational radiation changes
the basic constants of the three-body problem, and therefore must be incorporated.

Gravitational radiation leads to a decay of a binary orbit, and finally to a collapse
of the binary black hole system into a single black hole. The final stages of the decay
are very rapid, from the point of view of the three-body problem instantaneous. Thus
we may separate close two-body encounters in two categories: those leading to a
coalescence of the two black holes in less than the crossing time of the three-
body system, and those in which the decay time is longer and which may not lead
to a decay at all since the third body will modify the orbit. So very roughly we
may say that there is a safety limit q for the closeness of the two-body encounter:
if the bodies approach within this limit they coalesce without further three-body
influences, and if they do not, we may ignore the gravitational radiation altogether
for this encounter. This two-step model is very approximate but still quite useful
because of the chaotic nature of the three-body problem in general.

The safety limit q may be estimated as follows. We consider the two-body
encounter to happen at the pericentre of a highly elliptic orbit; the decay time of
such an orbit, with the pericentre distance q and semi-major axis a, is (Peters 1964)

T (q) ≈ 10Tc

(q

a

)7/2
(11.20)
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where Tc is the decay time of a circular orbit with the same value of the semi-major
axis (Eq. (11.13)). This initial orbital period of the same orbit is

P = 3 × 103

(
a

pc

)3/2 (m1 + m2

109 M�

)−1/2

yr. (11.21)

If the decay time is shorter than the initial period, it is unlikely that three-body
interactions have time to be effective. Thus we obtain the safety limit q by equating
T (q) = P , or

q

a
≈ 10−3

(
a

pc

)−5/7 (ML

M∗
L

)5/7 ( 4M
m1 + m2

)2/7

. (11.22)

Here we have used m1 + m2 = 6 × 108 M�(ML/M∗
L ). We see that typically the

safety limit q ≈ 10−3 pc.
However, what is usually more important than q is the ratio q/a. Let us deduce

a typical value of a. From the discussion in the previous section it appears that
the lifetimes of the black hole binaries in galactic nuclei are likely to exceed the
Hubble time, but it is unclear by how much. To get definite numbers, let us say
that the binaries involved have exactly Tc = 1.8 × 1010 yr left before coalescence.
Then it follows that the semi-major axis

a ≈ 0.2 pc

(
4M

m1 + m2

)1/4 (ML

M∗
L

)3/4

. (11.23)

We may use this value of a in the q/a ratio (even though this is clearly only an
approximation since the eccentric binary may not even be the same as the original
circular binary) and obtain

q

a
≈ 3 × 10−3

(
4M

m1 + m2

)3/28 (ML

M∗
L

)5/28

. (11.24)

Chapter 8, Eq. (8.39) gives the probability f (q) that the approach is closer than q:

f (q) ≈ 240q/a (11.25)

at low values of the angular momentum. Substituting q/a from above

f (q) ≈ 0.72

(
4M

m1 + m2

)3/28 (ML

M∗
L

)5/28

. (11.26)

This suggests that as many as 72% of all three-body systems formed as a re-
sult of galactic triple mergers may end up with a two-body collision and merger.
Then in effect these galactic nuclei would have a remnant eccentric binary as the
end result of the three black hole evolution. Note, however, that the extension of
Eq. (8.39) to such large fractions as 0.72 is beyond the range of applicability of the
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straight line extrapolation. Figure 8.12 suggests that the straight line extrapolation
is a factor of 3 too high relative to experimental data at large fractions, and a more
correct result would be ≈ 24% loss rate of three-body systems to coalescence. If Tc

is reduced to 2 × 109 yr corresponding to the neglect of the loss cone phenomenon,
the coalescence fraction becomes 50%. Considering the uncertainties, especially
in the typical value of Tc, the range of angular momenta L , the range of black hole
masses, the scatter of black hole masses around the mean relation etc., it is difficult
to say which number is closer to the truth. Heinämäki (2001) obtained about a 70%
loss rate in four black hole simulations which may be indicative also of the loss
rate for three black hole systems. This number could be slightly increased by con-
sideration of the Kozai mechanism when the inner and outer binary planes happen
to be almost perpendicular to each other (Blaes et al. 2002).

What happens to those three black hole systems where no coalescence takes
place and all three black holes survive? The end result is, as usual in the three-body
problem, an escape of one of the black holes, and the recoil of the binary in the
opposite direction. Therefore all three black holes leave the nucleus of the galaxy,
unless the mass range is very large and the recoil speed small. In the case of four
black hole systems, typically only three out of four black holes are involved in the
escape process and the fourth black hole remains in the nucleus of the galaxy.

Let us then consider what happens to the escapers. The key number is the mean
orbital speed of the binary before three-body interaction begins: v2

0 = G(m1 +
m2)/a. Using the above values for m1 + m2 and a (Eq. (11.23))

v0 ≈ 3600 km/s

(
ML

M∗
L

)1/8 (m1 + m2

4M
)1/8

. (11.27)

For the case of the shorter (no loss cone) binary lifetime, v0 ≈ 5000 km/s. Quinlan
(1996) estimates that v0 ≈ √

σvc ≈ 9000 km/s. The velocity of escape vs has a
wide distribution which peaks around vs = 1

8v0 (Eq. (7.21), the case of ms = m B)
and extends beyond vs = v0. It should be compared with the speed of escape from
the centre of a galaxy to infinity

vesc ≈ 1500 km/s

(
ML

M∗
L

)1/4

. (11.28)

Therefore, typically vs = vB ≈ 450 km/s, which means that neither the single body
nor the binary is able to leave the confines of the galaxy. However, some of the
escapers from the tail end of the vs distribution have high enough speeds to do so.
Let us start first by looking at the escapers from the galaxy and ask how frequent
they are, how are their escape velocities distributed, and when and how do we
expect both the binary and the single black hole to escape from the opposite sides
of the galaxy.
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The fraction of escape velocities vs falling in the tail end, vs ≥ 0.42v0, may be
obtained from Eq. (7.21) by putting v = 0.42 and ms = m B . It is F(0.42) = 0.045.
This number is quite sensitive to the type of system: at low angular momentum
there can be almost an order of magnitude increase in the tail (see Fig. 7.11) while
the opposite happens when the angular momentum becomes very large. The above
fraction F(vs ≥ v0) may be used as a representative value.

For both the binary and the single black hole to escape there is the additional
requirement that both masses should be about equal, say 0.7 ∼< ms/m B ∼< 1.4, i.e.
0.42 ∼< ms/MB ∼< 0.58. The probability for this happening, from Eq. (7.23), is
(M = 1, ma = mb = (1 − ms)/2):

Ps(0.42 ≤ ms ≤ 0.58)

=
∫ 0.58

0.42

(
m−2

s /
(
m−2

s + 2[(1 − ms)/2]−2
))

dms∫ 1
0

(
m−2

s /
(
m−2

s + 2[(1 − ms)/2]−2
))

dms

= 0.16.

(11.29)

Even though the integrals can be evaluated analytically, they are not trivial. We
get a simpler result if we use the variable m B = 1 − ms instead of ms . Then the
distribution of Eq. (7.23) becomes (for ma = mb)

f (m B) = m2
B

8m2
B + 16m B + 9

≈ 0.034(m B − 0.11),

where the last form is a good approximation for m B ≥ 0.11 (we may put f (m B) = 0
when m B < 0.11). Then the accumulated distribution for m B becomes

F(m B) =
{

(m B − 0.11)2/(0.89)2 if m B ≥ 0.11

0 if m B < 0.11.
(11.30)

The result on the right hand side of Eq. (11.29) is obtained by using this equation.
Multiplying F(vs ≥ v0) by Ps(0.42 ≤ ms ≤ 0.58) we get the probability for

two-sided escapes to be close to 0.7%. This result has been confirmed by numerical
simulations (Heinämäki 2001) where the value of about 1% was obtained for four
black hole systems. Considering the sensitivity of F(vs ≥ v0) to the value of total
angular momentum, and to a lesser degree the dependence of Ps on the same
quantity, the two values are well consistent with each other.

How often would we expect to see black holes escaping from diametrically
opposite sides of a triple merger galaxy? Assuming that the black holes are detected
one way or another, for example, in the radiation arising from their accretion disks
or from jets flowing out of the disk (Valtonen and Heinämäki 2000), we need to
know for how long a time the detection is possible. It is not an easy question to
answer, but we may estimate the period of visibility of the escaping black holes as



11.2 The problem of three black holes 301

follows. After escaping the potential well of the galaxy, the black holes typically
have rather small excess speed left, something like ≈ 1000 km/s. Therefore they
move ≈ 1000 pc/106 yr = 100 kpc/108 yr. It could be said that the association of
the escaped black holes with the parent galaxy becomes less likely when the black
holes are more distant than 100 kpc from the galaxy centre. The 100 kpc scale is
still within the range where it should not be difficult to say which galaxy the black
holes come from. This suggests that from an observational point of view the period
of detection may be of the order of 108 yr.

The other limitation is the lifetime of the accretion disk around the escaping black
hole. Unlike in the centre of a galaxy where gas inflows replenish the accretion disk,
in the intergalactic space very little new replenishment is possible. On the contrary,
there is a steady depletion of the accretion disk when the disk gas gradually drifts
inwards until it is partly swallowed by the black hole and partly blown out as winds
or jets. In order to reach a highly visible state, the accretion rate has to be rather
high, say 0.1M�/yr. The total mass of the accretion disk should be small compared
with the mass of the black hole itself, say 107 M�. At this rate the accretion disk
would be completely used up in (107 M�/0.1M�) yr = 108 yr. This is a rough
order of magnitude estimate, but it gives some support to the previous visibility
age. In reality, the accretion disk mass should decrease exponentially, resulting in
an exponential decrease in brightness; the period of observability would represent
the time interval when the brightness is above some detection limit.

If the detection period is typically 108 yr, the phenomenon of double escape
is seen during the fraction 108 yr/1010 yr = 10−2 of the age of the galaxy. We
have previously estimated that 76% of triple black hole systems manage to evolve
without degeneration into a binary system, and out of them 0.7% end up in
the category of the double escape. Therefore the total expected frequency of double
escape systems among triple merger galaxies is 10−2 × 0.76 × 0.007 = 5 × 10−5.
It is likely that all very bright elliptical galaxies have resulted from at least three
galaxies which have merged. Thus we expect that among 20 000 bright elliptical
galaxies there would be on average about one which is detectable as a source of
double escapers. The result would not change essentially if we were to neglect
the loss cones; then the escape from the galaxy becomes easier and the number of
double escapes increases. But the increase is compensated by a comparable loss of
binaries before the triple black hole systems arise (Problem 11.6). For this reason
the results of this present section are valid independent of the details of interactions
of binary black holes with their host galaxies.

How could these rare events be possibly seen? The expected frequency of about
1/20 000 among the parent population of bright elliptical galaxies suggests that the
escaped black hole pairs may manifest themselves as Fanaroff–Riley type II double
radio sources (Saslaw et al. 1974, Heinämäki 2001). Without going into further
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details of double radio sources, it may suffice to say that the radio lobes of double
radio sources are typically on opposite sides of the parent galaxy well aligned with
the nucleus. Also there are often trails of radio emission connecting the nucleus
and the radio lobes, proving that whatever causes the lobe emission has its origin
in the nucleus of the parent galaxy. Many times, but not always, the nucleus is also
a strong emitter of radio waves. In that case it is reasonable to assume that there is
a supermassive black hole also in the centre of the galaxy.

The phenomenology of double radio sources is well described by a model where
three or four black hole systems arise in connection with multiple mergers of
galaxies and where black holes subsequently escape in a symmetric manner. In the
case of three black hole systems the evolution may lead to two escapers, a single
body and a binary. The remaining lifetime of the binary is short compared with
the travel time out of the galaxy; thus also the initial binary quickly becomes a
single black hole. The emission of radio waves from these two receding black holes
via mechanisms related to accretion disks and jets is thought to be responsible for
the generation of the radio lobes and the trails connecting the lobes to the galactic
nucleus. When four black holes are involved, the result is the same except that one
black hole now remains in the nucleus and produces the central radio component
which is frequently observed.

There are two aspects of double radio sources which follow directly from the
three-body problem: the distribution of the double radio source sizes (i.e. maximum
linear extent) and the distribution of the symmetry parameter. The latter is the
distance of the more distant radio lobe from the galactic nucleus divided by the
distance of the nearer component from the nucleus. These distributions could be
related to the distributions of escape speeds of the black holes.

Let us assume that a black hole escaped from the nucleus of the galaxy with
speed vs which is greater than the escape speed by a wide margin. The latter
statement allows us to ignore the slowing down of the speed of the escaper. We
further assume that the black hole is ‘visible’ for a fixed period of 108 yr. Then the
maximum distance from the nucleus of galaxy where it can be observed is

Dmax = 360 kpc

(
vs

3600 km/s

)
, (11.31)

It is actually observed somewhere between the distance D = 0 and D = Dmax.
The distribution of the escape velocities vs , in units of the binary orbital velocity

v0, is (Eq. (7.21))

f (v) dv = 56v dv

(1 + 8v2)4.5
(11.32)
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using ms = m B as before. This may be approximated by

f (v) dv ≈ 0.009(vs/v0)−4.5 dv (11.33)

when 0.35 ∼< v ∼< 0.7, i.e. in the neighbourhood of the escape velocity vesc ≈
0.42v0. Here we have written the normalisation of vs in terms of v0 explicitly,
i.e. v = vs/v0. Equation (11.33) tells us that the number of escapers ending up in
the interval [v, v + dv] goes up as v4.5

0 when v0 increases and vs is fixed (at vesc,
say). Increasing v0 means that we are moving down the v-distribution to the range
where the frequency f (v) is higher. The probability of encountering a binary with
orbital speed v0 is proportional to the lifetime of such a system. From Eq. (11.13)
the lifetime Tc ∝ a4 ∝ v−8

0 . Therefore the increase in the probability with increas-
ing v0 is more than compensated by the decrease in lifetime; the total probability
P(vs) of having an escaper in the interval [vs, vs + dvs] is thus proportional to

P(vs) ∝
∫ ∞

vs

v4.5
0 × v−8

0 dv0 ∝ v−2.5
s . (11.34)

The lower limit of integration is based on the fact that the limitation on the binary
lifetimes applies only to binaries with orbital speed v0 ∼> vs . Binaries with lower
orbital speeds are very long lived but make practically no contribution to the class of
double escapers. Because of the one-to-one correspondence between vs and Dmax,
this is also the distribution for Dmax; it may also be taken as the first approximation
of the distribution of D:

P(D) ∝ D−2.5. (11.35)

Figure 11.4 shows how this distribution follows the observational data on dou-
ble radio sources. The flattening of the observed distribution below the linear size
400 kpc is expected since the assumptions of the model (neglecting vesc) are not
satisfied there; numerical simulations (Valtonen et al. 1994) show a similar flat-
tening below vs = 2vesc = 3000 km/s. Note that the average projected (in the sky)
distance of each component at this limit is 200 kpc. The typical deprojection fac-
tor is

√
2 since there is likely to be an extension of the double source also along

the line of sight. Thus the average real distance of the lobes from the nucleus
at this limit is just below 300 kpc and the average speed of outward motion is
≈ 300 kpc/108 yr = 3000 km/s, as it should be.

The second quantity of importance is the ratio of distances Dr on the opposite
sides of the galaxy. This is equivalent to the ratio of the average outward speeds
including the slowing down in the galactic potential. In this case v0 is a constant
since both black hole escapers arise from the same three-body event and we may
use Eq. (11.33) for vs . Because of the difficulty of the double escape, it is reasonable
to estimate that for the slower (binary) lobe vB ≈ vesc; more definitely, we may put
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Figure 11.4 The distribution of linear sizes of double radio sources (histogram)
compared with with Eq. (11.35), with arbitrary scaling (continuous line).

vB = 1.2vesc (Valtonen and Heinämäki 2000). Let us estimate the average outward
speed to be roughly equal to the asymptotic speed v∞ after escaping from the galaxy.
It is given by v2

∞ = v2
s − v2

esc for the single body and by a similar expression for
the binary. Then the distance ratio Dr is

D2
r = v2

s − v2
esc

v2
B − v2

esc

≈ 1

0.44

(
v2

s

v2
esc

− 1

)
.

Since we know the distribution of vs (Eq. 11.33), it is straightforward to calculate
the distribution of Dr . It is sometimes convenient to transform to the variable
y = ln Dr . Then

f (y) dy ∝ e2y dy

(1 + 0.44e2y)2.75
. (11.36)

This distribution is compared with the observation of double radio sources in
Fig. 11.5.

The theoretical peak at Dr = 1 (y = 0) agrees very well with observations.
There is a small but significant difference from the three-body theory in that there
are more asymmetric doubles than the theory would predict. It is obvious that
the available mass ratios put restrictions on the possible speed ratios. Equal mass
systems can only split in such a way that the escape velocities are in a 2:1 ratio, etc.
This may explain some of the observed asymmetry. However, numerical simulations
produce Dr distributions which are in agreement with the distribution of Eq. (11.36)
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Figure 11.5 The ratio of lobe distances Dr in double radio sources, measured using
the parameter y = ln Dr (solid line histogram). The theoretical distribution of Eq.
(11.36) is shown as a continuous line, with arbitrary normalisation. Numerical
results from the four-body simulations by Heinämäki (2001) are shown by the
dashed-line histogram.

(Valtonen et al. 1994, Heinämäki 2001). The results from the four-body experiments
of Heinämäki (2001) are also plotted as a histogram in Fig. 11.5. At small Dr they
agree with the observational histogram so closely that the two histograms mostly
overlap each other. The good agreement between the theory and the double radio
source data may be somewhat accidental since it depends on other theories besides
the dynamical escape theory.

In spite of many attractive features, the three-body theory for double radio
sources (usually called the slingshot theory; Saslaw et al. 1974) has not yet gained
popularity. The main reason is that no black holes have so far been directly ob-
served inside the radio lobes. However, such an observation is expected to be
difficult and may have to wait for a new generation of telescopes (Nilsson et al.
1997).

If only one black hole escapes, it follows the velocity distribution given above
(Eq. (7.21)). The least massive black hole is the most likely escaper. Then we apply
the accumulated distribution for a small escaper, and put v = 0.42. We find

F(vs ≥ 0.42v0) ≈ 0.57, (11.37)

which is more than ten times the probability for double escapes. Also, it is not
necessary to impose the restriction 0.42 ≤ ms ≤ 0.58; this increases the probability
of single escapes by another factor of ≈ 6. The dominance of single escapes is a
good signature of the black hole escape processes: a single escape is nearly two
orders of magnitude more likely than a double escape, as is also found in four-body
simulations (Heinämäki 2001).



306 Some astrophysical problems

However, it may be difficult to observe the single escapers. Unless there is a trail
connecting the escaper and the nucleus, it may not be clear where the black hole
has come from, and it may be confused with distant background objects of similar
nature. Also since a single escaper is typically less massive than a double escaper,
it is likely to be less luminous and be more easily missed.

Observationally, there are two sided or classical double radio sources (also called
D1) as well as one sided (D2) doubles. In the latter sources there is only one outer
radio lobe, the second one coincides with the nucleus of the galaxy. Thus D2
doubles could naturally arise from a single escape. The relative numbers D1/D2
vary depending on the type of radio source sample; generally, however, the ratio
D1/D2 � 1, unlike the theoretical number which is D1/D2 � 1. The difference can
be accounted for to some extent by the above mentioned observational selection
(Mikkola and Valtonen 1990, Heinämäki 2001).

The black hole which does not escape may still attain considerable speed, well
above the velocity dispersion in the nucleus of the galaxy. Then it becomes a radial
oscillator in the galaxy. Let us make a simple estimate for the radial extent and the
period of oscillation in the galaxy.

We take our model galaxy of mass 4.5 × 1011 M�; 50% of this mass is inside
r = 10 kpc radial distance and beyond this distance the mass enclosed by radius r
is roughly (Young 1976)

M(r ) ≈ 2.25 × 1011 M�

(
r

10 kpc

)0.4

. (11.38)

If all this mass were concentrated in the nucleus of the galaxy, the orbital period of
a body in a very eccentric orbit around the nucleus, with the apocentre at r , would
be

t0 = 2π
(r/2)3/2

√
G M(r )

= 3.6 × 106

(
r

kpc

)1.3

yr. (11.39)

A radial orbit starting at rest from distance r from the nucleus, which goes through
the nucleus and to the other side until it comes to rest again, takes a little longer
(7.6% longer to be exact) since the mass is not concentrated in the nucleus and
the body feels a reduced amount of central mass when r decreases. The full radial
oscillation period is then a little more than 2t0.

We next estimate the central velocity v which takes the body out to the maximum
distance r from the galactic centre. Let the potentials be U0 and U (r ) at the centre
and at the distance r , respectively. Equating the energy per unit mass at the centre
and at a very large distance (r → ∞) then gives for the escape velocity vesc

1

2
v2

esc + U0 = 0 (11.40)
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since both the velocity and the potential go to zero by definition as r → ∞. The
corresponding equation for any other speed v is

1

2
v2 + U0 = U (r ) (11.41)

since the velocity goes to zero at the distance r . Thus

v2 − v2
esc = 2U (r ). (11.42)

The potential is calculated as an integral of the central force from the distance r
to r → ∞ using Eq. (11.38):

U (r ) = −
∫ ∞

r

G M(r )

r2
dr = −5

3
(300 km/s)2

(
r

10 kpc

)−3/5

. (11.43)

Therefore

r = 0.35(
1 − v2/v2

esc

)5/3 kpc. (11.44)

This holds fairly well for 0.8vesc ∼< v ∼< 0.99vesc, i.e. 2 kpc ∼< r ∼< 240 kpc.
The oscillation is gradually damped because the black hole interacts with the

stars of the galaxy. This interaction may be described as dynamical friction and it is
most effective during the crossing of the centre of the galaxy where the star density
is high. Therefore we need to model the mass density of stars; for simplicity we
take the stars to be one solar mass each, which leads us to the number density

n =

⎧⎪⎨
⎪⎩

700 pc−3 if r ≤ 17 pc

70 pc−3(r/170 pc)−1 if 17 pc ≤ r ≤ 170 pc

70 pc−3(r/170 pc)−1.75 if 170 pc ≤ r ≤ 1700 pc.

(11.45)

This distribution is partly experimental (Young 1976), partly theoretical
(Milosavljevic and Merritt 2001) since observations are difficult especially in the
scales below the radial distance r = 17 pc.

The expression for dynamical friction from Section 3.14 may be written

du

u
= −4πG2msman ln �

dr

u4
(11.46)

where u is the speed of the black hole when crossing the galactic centre, ms is the
mass of the star (ms = 1M�), ma is the mass of the oscillating black hole (here
taken to be ma = 6 × 108 M�), n is the local number density of stars, and

� = bmaxu2

Gma
. (11.47)



308 Some astrophysical problems

To simplify matters, we put the maximum interaction distance bmax = 170 pc when
r ≥ 170 pc, and bmax = 17 pc when r < 170 pc. The corresponding values of ln �

are 5 and 2.7, respectively, assuming that u = vesc = 1500 km/s.
Now we may write du/u:

du

u
=1.77 × 10−3

(vesc

u

)4

×
[

10
∫ 0.1

0
dx +

∫ 1

0.1
x−1 dx + 5

2.7

∫ 10

1
x−1.75 dx

] (11.48)

where x = r/170 pc. We find

du

u
= 10−2

(
ML

M∗
L

)−1 (vesc

u

)4
(11.49)

where the dependence on the galaxy mass scale has been added. Note that du/u is
directly proportional to the black hole mass ma which can vary greatly on either
side of the mean value.

Even though the speed loss is only about 1% per crossing, the turning point
distances decrease rapidly. For du/u = 10−2, and starting with u = 0.99vesc, we
find the turning point distances in the intervals one cycle (i.e. on the same side of
the galaxy) at r = 240 kpc, 40 kpc, 17 kpc, 10 kpc, 6.6 kpc, . . . . For a black hole
twice as massive as our basic model we have r = 240 kpc, 17 kpc, 6.6 kpc, . . . . If
the turning points of the black hole oscillators are responsible for the creation of
radio lobes there would be a succession of lobe pairs in different scales such that the
younger pairs are closer to the nucleus and older ones further out (Valtonen 1976b).
Such interpretations are complicated by the fact that the gaseous component of the
galaxy where the lobes would be stationed may itself be in motion due to galactic
winds (Valtonen and Kotilainen 1989). Also the motion of the galaxy through the
intergalactic space may drag the radio lobes into the shape of a twin-trail (Valtonen
and Byrd 1980).

The lifetime of the oscillator is easy to calculate from Eq. (11.49). Forgetting
the mass scaling factor we may write that the total change du of u in dn crossings
of the nucleus is (using vesc as a unit speed)

du

u
= 10−2u−4 dn (11.50)

which is easily integrated from u = 0 to the initial value u0:

u4
0 = 4 × 10−2n. (11.51)

Thus it takes n ≈ 25 crossings of the nucleus to bring the oscillator with u0 ≈ vesc

to a halt. For smaller initial amplitudes fewer crossings are required: e.g. u0 = 0.8
gives n ≈ 10. Because the oscillation amplitude decreases quickly, so does the
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oscillation period. The time spent in later oscillations is so short that the total time
from the initial ejection to settling back to the nucleus of the galaxy is not much
greater than 2t0.

When the turning point distance r exceeds r ≈ 10 kpc, the oscillator lifetime ex-
ceeds the typical visibility age of an escaper from the galaxy. Then it is quite likely
that the escaper (departing from the other side of the galaxy, opposite to the oscilla-
tor) cannot be identified with the three black hole event, and the oscillator is the only
reminder of the three-body escape process. The oscillator may also create a double
radio source, but of Fanaroff–Riley type I. In type I doubles the brightness fades
away from the centre of the galaxy, contrary to the ‘classical’ type II radio doubles.

In a process with four black holes, the fate of the oscillator is more complicated.
Since now one black hole remains in the centre of the galaxy, the oscillator scatters
from it on its first crossing of the nucleus. As a result of the two-body scattering,
both black holes are ejected and become oscillators of small amplitude. They soon
settle back in the nucleus and form a binary there (Valtaoja et al. 1989). Thus the
lifetime of the oscillator is not much more than t0 in this case. If the faster escaper,
on its way out of the galaxy, is still visible, we may see a double radio source of
mixed morphology: a Fanaroff–Riley type II lobe on one side and a type I lobe on
the other side of the galaxy. The binary black hole in the nucleus of the galaxy, if
it has already formed, may also appear as a strong radio source.

Finally there is the most likely possibility that neither black hole is able to escape
from the galaxy, and we have two oscillators along a common line. The black holes
necessarily meet before the first oscillation of the larger amplitude is completed, and
then they scatter off each other. Since the scattering generally takes place outside
the nucleus, the new orbits are not radial. However, the bodies in these non-radial
orbits will also be gradually accreted to the nucleus where they form a binary. In
addition to the Fanaroff–Riley type I lobe structure we would expect these sources
to have a complex central structure, due to non-radial orbits.

One of the signatures of three-body escape is the concentration of escape angles
close to the fundamental plane. The orientation of this plane derives from the angular
momenta of the orbital motion of the galaxies which have merged and therefore we
expect that also the accretion disks around the black holes prefer the same plane.
Since the black holes as well as the gas in accretion disks come from at least two
separate mergers, each with their own orbital angular momentum, the alignment of
the angular momenta of the gaseous disks may not be perfect with the total angular
momentum of the black hole system, but anyway strong correlations are expected.

The best indication of the orientation of an accretion disk is the jet or pair
of jets. They presumably propagate along the rotation axis of the accretion disk,
along the line of the angular momentum vector. On the other hand, escaping black
holes propagate in or close to the fundamental plane, nearly perpendicular to the
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angular momentum vector. Therefore there should be a strong tendency for jets to
be perpendicular to the trails leading to radio lobes. This is what is observed: the
projections of jets of the central components in the sky are perpendicular to the
projections of the trails much more often than is expected from random orientation
(Example 7.1; Valtonen 1996).

11.3 Satellite black hole systems

Minor mergers, mergers between galaxies of very different sizes and masses, are
presumably much more common than mergers of major galaxies. If minor galaxies
also possess supermassive black holes, even though proportionally smaller ones than
those discussed so far, then minor mergers produce binaries of very unequal masses.
After multiple minor mergers a satellite system develops, dominated by a single
massive black hole (say, 109 M�) surrounded by a swarm of smaller black holes
(say, 105 M� category). Even though this cluster may have hundreds of members,
it is still much less massive than the central black hole.

The lifetimes of the satellites are in principle much greater than the lifetime of a
binary composed of two primaries at the same orbital distance. From the expression
for Tc (Eq. (11.13)) we see that lowering the reduced mass M by a factor 104

allows one to lower the orbital radius a by a factor of 10 and still keep the same
lifetime. Therefore we may assume that there exist compact black hole clusters also
around each component of a massive binary. When the binary orbit shrinks after
being involved in three-body processes, and after having suffered energy losses to
gravitational radiation, the satellite clusters may become unstable. They should be
totally dispersed by the time the binary orbit has shrunk by a factor of ten, i.e. when
the binary orbital speed has increased by a factor of

√
10. Then we are discussing

an orbital speed around 10 000 km/s and escape speeds of the satellites up to this
figure. Thus satellites would mostly leave the parent galaxy.

A small part of the satellite system will be found in ejection orbits instead of
escape orbits, and they would approach the shrinking binary again. If they were
to escape, their escape speeds are likely to be higher than before since the binary
orbital speed is constantly increasing. At the last stable orbit around a non-rotating
Schwarzschild black hole the orbital speed is about 120 000 km/s. It is possible
that some satellites escape with speeds up to this value if the three-body process
takes place just before the binary collapses. Post-Newtonian three-body calculations
appear to confirm this (Basu et al. 1993, Haque-Copilah et al. 1997).

11.4 Three galaxies

Galaxies are ‘soft’ bodies which can readily stick together when they collide. Dy-
namical friction brings galaxies together in time scales which are typically much
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shorter than the Hubble time, and in times of the same order as the period of the
initial encounter orbit of the colliding galaxies (see Problem 10.4). Therefore the
problem of three galaxies may include collisions in an important way, especially
since the distances between galaxies in compact groups are not very much greater
than the radii of galaxies. From three-body scattering experiments like the ones
shown in Fig. 8.11 and Eq. (8.42) we find that the probability for q/a0 ≤ 0.1 is
about 40%. This is confirmed by numerical experiments with three ‘soft’ bodies
(i.e. galaxies; Zheng et al. 1993) which show that indeed about 40% of triples
become binary galaxies within the Hubble time. The remaining triple systems be-
come unbound in some cases, but mostly they remain as bound systems, and will
perhaps merge at a later time. With enough time, a merger of all three galaxies or
the formation of a stable binary system will almost always result. However, the
observed triples and also many binary galaxies are still in transitional stages of
dynamical evolution because their crossing time is only about 10% of the Hubble
time (Wirén et al. 1996).

Under special circumstances, especially if a circular binary galaxy exists,
passing galaxies may also be accelerated to fairly high speeds. Equation (10.79)
tells us that near the stability boundary the relative energy change of the binary
can be typically �EB/EB ≈ 0.1. If the orbital speed of the circular binary is v0, its
orbital energy is |EB | = 1

2Mv2
0, M being the reduced mass. The energy available

to the passing third galaxy is then about 0.1 1
2Mv2

0. If the passing galaxy comes with
zero energy (parabolic orbit) in a direct orbit, and leaves with the speed vs , then

1

2
mv2

s = 0.1
1

2
Mv2

0 (11.52)

or

vs

v0
≈
√

0.1
M
m

≈ 0.2 (11.53)

for equal mass galaxies.
In typical galaxies with ‘flat’ rotation curves, the total mass of a galaxy is

M = u2 R

G
(11.54)

if u is the constant rotation speed and R is the radius of the galaxy. Two such
galaxies in contact with each other revolve with orbital speed

v0 =
√

2G M

2R
= u. (11.55)

Therefore the asymptotic escape speeds of galaxies reach up to 1/5 of the internal
rotation speeds of galaxies involved, i.e. up to 100 km/s or so. Figure 7.7 tells us
that occasionally there may be an escape even with vs ≈ u, and such speeds have
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Figure 11.6 The apparent excess mass in a cluster of galaxies like the Coma
Cluster, when determined using the virial theorem. Points are from the model
calculation by Laine et al. (2004).

been confirmed in numerical experiments with ‘soft’ bodies (Valtonen and Wirén
1994).

This opens up the possibility that in some systems escaper galaxies may play
a role (Valtonen et al. 1993). This role can be the greater the more massive is
the binary which gives the accelerations. For example, in the centre of the Coma
Cluster of galaxies there may exist a binary with orbital speed v0 ≈ 1800 km/s.
Such a binary would accelerate galaxies up to speeds of the same magnitude, and
would confuse the analysis of the cluster mass if the escapers are not identified
(Valtonen and Byrd 1979). It is very difficult indeed to know which galaxy has
passed by the binary and which one has not, and which one has been accelerated
to the escape speed by the binary and which one is bound to the cluster as a whole.
The net result is that the determination of mass by using observations and the virial
theorem (Eq. (2.28)) could be wrong by a factor of two or so.

Figure 11.6 shows the calculated virial mass in a model Coma Cluster divided
by true mass (which is of course known in a model). The virial mass determination
has been carried out in the same way as observers do, looking at the cluster from a
given direction, and using only the ‘measurable’ information of radial velocities and
projected positions in the plane perpendicular to the line of sight. In this simulation
which includes soft-body interactions of galaxies in a realistic way, 248 ordinary
galaxies of mass-to-light ratio 30–45 fall into the potential well of a circular binary,
with a total mass of 3.5 × 1014 M�. Some of the galaxies escape, of the order of
a dozen of them, while the rest of the galaxies form a bound cluster around the
binary.
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Figure 11.7 The dispersion of radial velocities of galaxies as a function of distance
from the centre of the Coma Cluster of galaxies. The points with error bars refer to
observational data while the solid line comes from a model calculation by Laine
et al. (2004).

The radial velocity dispersion of the galaxies as a function of the projected
distance from the cluster centre is shown in Fig. 11.7 (solid line). For this model the
radial velocity profile matches observations (points with error bars) quite well. The
same is also true for the surface density of galaxies as a function of the distance from
the centre. Therefore we may say that the model is consistent with the observations.
Then we also have to conclude that the mass of the cluster calculated using the virial
theorem may be too large by a factor of two to three.

This is a model for a binary + 248 galaxies. But since the dominant interaction
is between the binary and one galaxy at a time, we may also use it as representing
248 binary + single galaxy systems. Thus also in such a triple galaxy sample we
expect a similar overestimate of the total mass if the virial theorem is used.

11.5 Binary stars in the Galaxy

Numerical simulations of star cluster evolution have shown that three-body interac-
tions take place among cluster stars frequently. In the three-body breakup a binary is
often expelled out of the cluster and it becomes a binary in the general field of stars
of the Galaxy. There may still be further encounters with other stars later on, but
on the whole the ‘hard’ binaries probably have their properties more or less frozen



314 Some astrophysical problems

since their escape from the star cluster of their origin. We will now study what kind
of binary star population we expect from this process and how it compares with the
observed binaries.

Our statistical theory for three-body break-up in Chapter 7 was derived assuming
that all systems have a constant total energy E0. But in star clusters E0 may vary
greatly from one three-body system to another. According to Eq. (7.22) the available
phase space volume σ is inversely proportional to |E0|:

σ (|E0|)d|E0| ∝ |E0|−1 d|E0|. (11.56)

If for any reason the three-body systems are uniformly distributed in the E0 space
then we expect that the binary energies EB after the three-body breakup also follow
Eq. (11.56), i.e. Öpik’s law of Eq. (1.2) should be valid. To what extent this is
true can be found out by studying young star clusters observationally as well as by
simulating star formation processes theoretically.

Hard binaries in star clusters tend to harden further. At the limit of very hard
binaries we may put v = 0 in Eq. (8.35) and write the average hardening rate

1

2
Mv2

0 R� =
〈

d|EB |
dt

〉
= 3G2m3

B

M
M

n

v3
. (11.57)

In a star cluster we may regard the right hand side as a constant in the first approx-
imation, even though in fact the density of stars n and the typical speed of stars do
vary during the cluster evolution. But using this assumption, and also putting all
stars equal to 1M�, the equation is easily integrated:

EB

(EB)0
= 16G2 M2

�nT

v2
0v3

(11.58)

where (EB)0 is the initial value of the binary energy, |(EB)0| � |EB | and v0 is the
corresponding mean orbital speed. T is the time of escape of the binary from the
cluster since the birth of the star cluster.

Because of the evolution in the star cluster as well as the effect of the galactic tides,
the cluster is gradually dissolved. The time of dissolution td has been estimated at

td ≈ 5.7 × 108

(
Mcluster

250M�

)(
1 pc

rh

)3

yr (11.59)

times a factor depending on the structure of the cluster (Binney and Tremaine
1987). Here Mcluster is the mass of the cluster and rh is its median radius. Since
250 solar mass stars within a sphere of 1 pc in radius makes the average number
density n = 250/( 4

3π pc3) ≈ 60 pc−3, the equation may be written using this mean
number density n:

td ≈ 5.7 × 108
(
n/60 pc−3

)
yr. (11.60)
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We may take the typical escape time of the binary to be half of td , i.e.

T ≈ 3 × 108(n/60 pc−3) yr. (11.61)

From here n may be solved and inserted into Eq. (11.58) above. Then

EB

(EB)0
≈ 16G2 M2

�
v2

0v3

(
T

3 × 108 yr

)
60 pc−3 × T

= 5.3

(
T

3 × 108 yr

)2 [
v2

0v3

(km/s)3

]−1

.

(11.62)

Putting a typical number v3 = 0.25 km/s, and starting from a hard binary with
v0 = 1 km/s, we expect to end up with

EB

(EB)0
≈ 20

(
T

3 × 108 yr

)2

. (11.63)

In a typical hardening period of T = 108 yr we then expect the average binary
binding energy to increase by a factor of two and the corresponding orbital period
to shorten by about a factor of three.

Since |EB |0 ∝ v2
0, the final value of |EB | does not depend on v0 (i.e. on the initial

orbital period) but only on T . Therefore the distribution of final periods P should
depend on the distribution of T .

A numerical simulation of the Pleiades star cluster by Kroupa et al. (2001) shows
that in its assumed 100 million year lifetime the binary period distribution shifts
toward shorter values by about a factor of three at the end of large periods (P ∼> 30
yr). This agrees with our simple estimate. At the end of short periods no significant
shift is detected in the simulation.

Depending primarily on the cluster star density, clusters live different lengths of
time, and provide different periods T for the hardening process. We get an idea of
the distribution of T from observations of star clusters. The current age τ of a star
cluster is a representative time in the history of a cluster, and may well tell us when
a typical binary escape happens. The distribution of τ is observed to be (Wielen
1971)

f (τ ) ∝ τ−1 (11.64)

in the interval 2 × 107 yr ∼< τ ∼< 5 × 108 yr, and it steepens beyond the upper limit.
Let us then suppose that also

f (T ) ∝ T −1 (11.65)

in this range.
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Figure 11.8 The period distribution of a sample of nearby binary stars with a
solar type primary (Duquennoy and Mayor 1991, Fig. 7). Lines refer to theoretical
expectations.

Since EB/(EB)0 ∝ T 2, and the corresponding period ratio P/P0 ∝ T −3, we
find

f (P/P0) = f (T ) dT

d(P/P0)
∝ (P/P0)−1. (11.66)

In a logarithmic scale the distribution of P/P0 is flat:

f (P/P0)

d log(P/P0)
= constant (11.67)

since d(P/P0) = (P/P0) d(log(P/P0)). This should be valid over one and a half
orders of magnitude in T , which corresponds to over four orders of magnitude in
P/P0.

What is the range of validity of this result? At the end of small T , below about
T = 2 × 107 yr, there is negligible binary hardening. At the other end, T ≥ 5 × 108

yr, the power-law of Eq. (11.65) steepens and the expected period distribution
becomes (P ∼< 10 yr):

f (P/P0)

d log(P/P0)
∝ (P/P0)3/2. (11.68)

These distributions are compared with observations (Duquennoy and Mayor 1991)
in Fig. 11.8. We notice that the predicted break at the end of low values of
P/P0, below the orbital period of ten years, is not borne out by observations.
It appears that these short period binaries come from a binary population which
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have short periods to start with. Such ‘primordial’ binaries are observed in star
clusters and they make an important contribution to the short period end of the
distribution.

The reason for the relative flatness of the short period binary distribution may
be in the star formation process. Apparently, Eq. (11.56) applies there at least over
a limited range of E0. The scale free property of the distribution for longer periods
may result from binary hardening. The steepening of the period distribution beyond
log(P/yr) ≈ 5 is well understood by the disruption of long period binaries in the
Galactic field. Relative to the stellar background, these binaries are ‘soft’ and tend
to become even softer until they break up.

The distribution of the eccentricities of binaries leads to the same conclusion:
tight binaries, with periods less than 3 yr, have a bell shaped distribution with a peak
around e = 0.3. Wider binaries, with periods exceeding 3 yr, show a distribution
which agrees with f (e) = 2e, the distribution expected after three-body evolution
(see Fig. 1.7, Duquennoy and Mayor 1991, Kroupa 1995a, b).

The three-body evolution also modifies the binary mass ratios. Binary pairs where
both components are massive are more likely to survive than pairs with unequal
masses. This makes the mass ratio distribution evolve towards m2/m1 ≈ 1. The
mass ratios obtained by picking pairs of stars at random from the initial distribution
of stellar masses are therefore subject to later evolution.

Different binaries evolve by different amounts. The most massive binaries tend
to settle near cluster centres and they are subject to many strong three-body interac-
tions. As a result, exchanges of binary members take place until the binary is made
up of two rather heavy members.

Ordinary binaries are involved in fewer strong three-body interactions. There we
may assume that only a single three-body interaction is responsible for the mass
ratio distribution. Starting from this assumption, we may pick three mass values
at random from the Salpeter (1955) initial mass function f (m) (see Section 1.4).
Then we use the probability distribution of Eq. (7.23) to decide which star (ms)
escapes and which are the two others (ma and mb) that make up the binary pair.
The mass ratio m = mb/ma (mb < ma) is thus obtained. Repeat the process many
times and the distribution of mass ratios is built up. The procedure is best carried
out by computer in Monte Carlo fashion, i.e. by picking out random numbers from
suitable distributions.

The result of this operation is shown in Fig. 11.9 as a dashed line. A comparison of
the data points for a sample of binaries with B-type primaries (where the Salpeter
mass function is applicable) shows good agreement. It thus appears that these
binaries (of typical orbital period 3 yr) have had at least one three-body interaction
in the past.
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Figure 11.9 The mass ratio of binary star components in an observational sample
with a B spectral type primary (points with error bars; Evans 1995). The dashed
line is based on a theory where two lower mass companions for the B-type star
have been picked at random, and one of the companions has escaped.

In the case of solar type (spectral class G) primaries the Salpeter mass function
for single stars is not suitable. However, a flatter power-law, with index α = 1.25
may be used (Section 1.4). Then the same process as described above leads to the
distribution of Fig. 11.10. The observations by Duquennoy and Mayor (1991) are
well described except at the low values of m2/m1 where both the observations and
the power-law assumption are very uncertain.

For the most massive O-type stars this procedure is not reasonable since nu-
merous three-body encounters have in fact truncated from below the distribu-
tion of the possible mass values. Now we may pick three mass values from the
power-law distribution of Eq. (1.4) with α = 3.2 (applicable to the upper end of
the mass range), all of which are above a given lower limit. Then we again ask
which one of the three stars escapes, which ones make the binary and what is
their mass ratio. The mass ratio distribution built up in this way is shown as a
line in Fig. 11.11. It agrees well with the observed O-star primaries sample (Abt
1977).

The rather puzzling situation with the mass ratio distribution varying as a function
of the spectral type of the primary is therefore explained as a result of three-body
interactions among stars (Valtonen 1997a, b, 1998).
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Figure 11.10 The observed distribution of binary star mass ratios when the primary
is a solar type star (points with error bars; Duquennoy and Mayor 1991). It is
compared with the three-body theory with α = 1.25.
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Figure 11.11 The observed distribution of binary star mass ratios when the primary
is an O-type star (points with error bars; Abt 1977). It is compared with the three-
body theory with α = 3.2 and single star mass distribution truncated from below.
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11.6 Evolution of comet orbits

We now have the necessary tools to continue the discussion begun in Section 1.3
on the origin of comets. We were left with the question of whether short period
comets might evolve from Oort Cloud comets via successive three-body encounters
in the Sun–planet–comet system. What are the orbital properties of the comets after
several encounters?

We consider encounters with each planet separately and for simplicity suppose
that the orbits of the planets are circular. For the current problem this is an acceptable
approximation. Then we have a straightforward application of the restricted circular
three-body problem which was discussed in Chapter 6.

Any of the planets may be the ‘second’ body; however, in the comet problem the
four largest planets Jupiter, Saturn, Uranus and Neptune dominate. Among them,
Jupiter appears to be most important, being the most massive (about 0.1% of the
Sun’s mass) and having the innermost orbit at about 5.2 AU from the Sun. For this
approximation, then, the binary is the Sun–Jupiter system.

Jupiter family comets are usually defined such that their orbital periods are less
than 20 years. This translates to orbital semi-major axes being less than 1.4aB ,
where aB = 5.2 AU. A Halley type comet has an orbital period greater than 20
but less than 200 years, and thus its semi-major axis is in the range from 1.4aB to
6.5aB . An Oort Cloud comet has a very large semi-major axis, typically ∼ 104 AU.

The minimum energy change U required to bring a comet from the Oort Cloud
to the Jupiter family is

UJ F = 103/1.4 = 714, (11.69)

while the same quantity for a Halley type comet is

UH T = 103/6.5 = 154. (11.70)

The integrated cross-section for capture into the Jupiter family is (using F = 4π )

σJ F = 1

4
Fa2

B

1

U 2
J F

≈ 2 × 10−6πa2
B (11.71)

(Eq. (6.54)). H. A. Newton (1891) earlier obtained essentially the same result. The
corresponding cross-section for Halley type comets is

σH T ≈ 4 × 10−5πa2
B . (11.72)

Therefore the probability of capture directly from a near-parabolic Oort Cloud
orbit to a short period orbit is very low, less than 10−4. In this situation we need
to investigate other paths which an Oort Cloud comet might take to reach a Halley
type orbit. At the other end of the scale we have a diffusion process by which the
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energy change UH T occurs through many small steps. Every step corresponds to a
passage through the planetary region, and U can be either positive or negative.

Let us then consider a random walk in energy space (Fernandez and Gallardo
1994). A typical step size is Ustep = 4 (Fernandez 1982), and the number of steps
required is

Nsteps ≈ (UH T /Ustep
)2

. (11.73)

At every step there is a certain probability that a comet escapes from the Solar
System along a hyperbolic orbit. The probability that a long period comet survives
Nsteps crossings of the planetary region has been calculated to be (Everhart 1976)

pN ≈ 0.5/
√

Nsteps. (11.74)

This is also the capture probability of Halley type comets when we substitute Nsteps

from above:

pH T ≈ 0.5Ustep/UH T ≈ 0.013. (11.75)

The result has been confirmed by orbit calculation methods by Emel’yanenko and
Bailey (1998). For the Jupiter family UJ F = 714 which gives the capture probability

pJ H ≈ 0.0028 (11.76)

which is also found by other methods (Nurmi 2001).
The number of orbital revolutions leading from an Oort Cloud comet to a Halley

type comet is Nsteps ≈ 1500. At every crossing of the planetary region there is also
the probability σH T /πa2

B ≈ 5.4 × 10−5 that a comet jumps directly into a Halley
type orbit; trying to do this 1500 times gives the total probability 5.4 × 10−5 ×
1500 ≈ 0.08 or 8% chance of success. Therefore the diffusion route is more likely
to lead to a Halley type orbit than a single jump. The same may also be concluded
about the Jupiter family.

The rate of comets coming from the Oort Cloud and passing through the area
πa2

B of Jupiter’s orbit has been estimated to be about one per year if we con-
sider comets brighter than the magnitude limit H10 = 7 (Bailey and Stagg 1988).
This corresponds to bodies which probably have diameters in the range 5–10 km
(Weissman 1983, Bailey 1990). Therefore the annual capture rate is about 0.013
Halley type and about 0.0028 Jupiter family comets.

The steady state population may be estimated by calculating how many comets
are captured during the visible lifetime of a comet. The lifetime may vary greatly
from comet to comet (Wiegert and Tremaine 1999), and also the comets probably
fade off gradually rather than disappear from sight suddenly. Therefore the visible
lifetime is an average quantity which describes how many revolutions the comet
typically takes to become fainter than the limit H10 = 7. This quantity is very poorly
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known. We assume that the lifetime is 200 revolutions (Delsemme 1973, Kresak
1987) which translates to 15 000 yr for a typical Halley type comet whose period
is about 75 yr. It is less than 10% of the typical dynamical lifetime of a Halley
type comet (Bailey and Emel’yanenko 1996). In 15 000 yr about 200 Halley type
comets are captured. Therefore this is the expected steady state number of Halley
type comets.

The number of known Halley type comets in this absolute brightness category
is about 20. It is actually less than 20, but by extrapolation from the brightest
magnitudes where the discoveries should be most complete, we arrive at this figure
(Hughes 1988). It has been argued that because of incomplete detections the actual
number should be more like 200–400 (Fernandez and Gallardo 1994, Shoemaker
et al. 1994), but there is no unanimity about this (Emel’yanenko and Bailey 1998).
In any case one may say that considering the great uncertainties, the captures from
the Oort Cloud are numerous enough to explain the current number of Halley type
comets. It has also been suggested that part of the Halley type population originates
from a relatively low inclination Inner Oort Cloud (Levison et al. 2001).

When we repeat the same calculation for a typical Jupiter family comet, with
its capture probability about 1/5 and its period about 1/10 of the corresponding
values for a Halley type comet, we get a steady state population of 4 comets. This is
actually the same as the number extrapolated from observations. But if the severe
incompleteness in detections is true, then the Oort Cloud captures may explain only
about 5% of the current Jupiter family.

The diffusion origin of the Jupiter family would mean that on the way the comets
would have spent time as Halley type comets. But there is a good argument against
this evolutionary channel: the Tisserand parameter T in the two comet groups is
different. Relative to Jupiter, the parameter T > 2 for all Jupiter family comets
except for seven of them while T < 2 for all Halley type comets except for two of
them. Remember that the Tisserand parameter is conserved in the capture process
as long as the influence of other planets can be ignored. The rather small overlap of
the two comet families with respect to the Tisserand parameter suggests that only
a small fraction of the Jupiter family (≈ 5%) comes from Halley type orbits.

In reality the comet orbits evolve via many encounters (minor and major), and
there are important evolutionary trends also between close encounters. Monte Carlo
models have been built for example by Wetherill (1991), Fernandez and Ip (1991),
Weissman (1991), Stagg and Bailey (1989), and Nurmi (2001) where the evolution
proceeds via a succession of three-body encounters. The conclusions are generally
similar to the findings based on the diffusion model. It is especially difficult to get
the low inclination Jupiter family when the starting point is the isotropic Oort Cloud
(Nurmi et al. 2002). Simulations starting from the Kuiper Belt as a source region
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for the Jupiter family comets have been more successful in this respect (Levison
and Duncan 1997).

Other planets besides Jupiter make their own contributions to the comet captures.
Since Neptune is the outermost of the giant planets and therefore has the largest
orbit cross-section πa2

B , we will consider its contribution in the following.
According to Fernandez (1982), the total comet flux through Neptune’s orbit is

about 140 times greater than the flux through Jupiter’s orbit, and it could be even
another factor of ten greater (Bailey and Stagg 1990). The size of its orbit is 5.8
times greater than Jupiter’s while its mass is 18.44 times less than Jupiter’s. The
energy change required to bring a comet from the Oort Cloud to an orbit with
semi-major axis less than 60 AU (twice the orbital radius of Neptune) is

UT N ≈ 18.44 × 103

2
≈ 9.2 × 103 (11.77)

and the direct capture cross-section

σT N ≈ 10−8πa2
B . (11.78)

The annual direct capture rate is then 140 × 10−8 ≈ 10−6. The lifetime of these
Transneptunean comets has been estimated to be 4 × 107 years (Levison and
Duncan 1997); in this time span the population of ≈ 40 comets is accumulated;
this is also the steady state number of directly captured comets.

The probability of getting a Transneptunean comet by diffusion is

pT N ≈ 0.0002. (11.79)

The annual capture rate becomes 0.03 comets, and the steady state population
numbers about one million. This could be up to 107 comets depending on the Oort
Cloud comet flux at Neptune’s orbital distance. The number of steps in the diffusion
would be typically five million, and the orbital period would be in millions of
years. Therefore there has not been enough time within the age of the Solar System
(≈ 4.5 × 109 yr) for diffusion to carry the bulk of the comets through. The comets
most likely to have been transferred from the Oort Cloud are the low inclination
comets (Nurmi 2001), but even among them only a small fraction would have
achieved the transition to the Transneptunean region. Still their number could be
significant since they represent a flux which starts from the original Oort Cloud at
the early Solar System; that flux may have been orders of magnitude greater than
the present day comet flux (Chyba et al. 1994).

Transneptunean comets are difficult to detect, and cannot be seen at all in the size
range (5–10 km diameter) which we have been discussing. There is however, a fairly
large number (over 300) of very large, 100 km class, bodies in this region of the
Solar System. If they represent a ‘tip of an iceberg’, the largest of a whole range of
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comets, then it is possible that around 107 comets exist in the size range which we are
considering. Thus the captured population could make only a small contribution to
the Transneptunean comets; it is usually assumed that most of them are primordial,
left over from the formation of the Solar System (so-called Kuiper Belt; Edgeworth
1949, Kuiper 1951). There is some evidence of two distinct populations of Kuiper
Belt objects (Levison and Stern 2001); this may have relevance with regard to the
captured subpopulation.

It is generally assumed that some of the Transneptunean comets drift inward
under the influence of giant planets and finally end up in the Jupiter family (Levison
and Duncan 1997). In Monte Carlo simulations (Valtonen et al. 1998) about a quarter
of Transneptunean comets become visible as Jupiter family comets at the end of a
long evolution. Thus Jupiter family comets could have an origin quite distinct from
the Halley type comets, and have only a small contribution from direct Oort Cloud
or Halley type captures.

Another constraint on the origin of comet families is the distribution of their
orbital inclinations. For comets captured from the Oort Cloud to Halley type orbits
we may use Eq. (6.59) with Q = 0.5 (a typical value according to the simulations
by Nurmi et al. 2002) and obtain

fH T (ι0) dι0 = F sin ι0 dι0/π = 0.5
[
1 + 2.73 (1 + cos ι0)1.5

]
dι0. (11.80)

As was explained in Section 6.5, the sin ι0 factor appearing on the left hand size is
due to an isotropic initial distribution of orbital orientations, as in the Oort Cloud.
Note that the distribution is given for initial inclinations ι0; the final inclinations
are not very different for Halley type comets (Eq. (6.73)), and therefore we may
compare the distribution fH T (ι0) with observations. Figure 11.12 shows such a
comparison.

When comets are further captured from the Halley type orbits to the Jupiter
family, we multiply fH T (ι0) by the appropriate capture probability, Eq. (6.59).
Now it is suitable to use Q ≈ 1 (Nurmi et al. 2002); we put exactly Q = 0.938 in
Eq. (6.59) for reasons explained in Section 6.5. Then the inclination distribution
becomes

f J F (ι0) dι0 = fH T (ι0) dι0 × 0.062π
[
1 + 127.34 (1 + cos ι0)1.72

] /
sin ι0.

(11.81)
The distribution of final inclinations is shifted towards smaller ι and it is also spread
considerably (Eqs. (6.73) and (6.74)). Therefore, when we compare Eq. (11.81) with
observations (Fig. 11.13) we have to remember that the theoretical line does not
include the shift nor the spread; when they are taken into account the agreement
between theory and observations is quite good.
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Figure 11.12 A comparison of the inclination distribution of Halley type comets
with the theoretical expression (Eq. (11.80)).
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Figure 11.13 The distribution of inclinations in the Jupiter family of comets, and
a theoretical line assuming that the Jupiter family is captured from the Halley type
comets. The line refers to precapture inclinations, which are more concentrated
around ι = 0 than the final inclinations.
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Figure 11.14 Comet capture probability N (ι) by planet Jupiter from the initial
perihelion interval 4 AU < q < 6 AU, per unit interval of initial inclination ι,
in units of 10−5 (points with error bars, Nurmi 2001). The probability is com-
pared with the single encounter capture cross-section with Q = 0.85 (dashed line,
Eq. (6.59) scaled by a suitable factor).

Even though our theoretical formulae were derived for a capture via a single
encounter, they should also apply to diffusion and to capture after a large number
of orbits. In Fig. 11.14 we show calculations by Nurmi (2001) of comet capture
by Jupiter. The results show the capture probability after 10 000 orbits when the
perihelion of the initial orbit is in the interval 0.77 ≤ Q ≤ 1.15. In Eq. (6.59) this
interval is effectively covered by using a single value Q = 0.85. The comparison of
the single encounter theory and the numerical results shows good agreement over
most of the range of initial inclinations ι0, and it justifies to some extent the use of
the single encounter theory in the inclination studies.

The Monte Carlo method of calculating small-body orbits has also been used
to study the transfer of comets or similar objects between different solar systems
(Zheng and Valtonen 1999). It has bearing on the interesting problem of whether
simple forms of life (bacteria) can be transferred in life-preserving manner from
one planet to another (Mileikowsky et al. 2000). The answer appears to be that
the transfer of life is indeed possible, but not very common between separate solar
systems.
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We have now come through a full circle in the study of the three-body problem. In
the seventeenth and eighteenth centuries Isaac Newton and his followers wondered
whether the orbit of the Earth around the Sun is stable enough for the long-term
future of mankind. As we have shown above, the first order three-body perturbations
indeed leave the major axis of the Earth’s orbit unchanged, and even if we go to
the next higher order, the result is the same. Today we ask where life on the Earth
came from. Besides the obvious answer that it came from here, we now consider
possibilities of elementary life forms travelling through space, carried and protected
by small bodies like meteoroids. When they land on a new planet, life may start to
flourish and gradually evolve to more complex forms. In these queries the three-
body problem plays an important role. However, it is not the perturbation techniques
used to solve the question of the stability of the Earth’s orbit, but rather the scattering
approach that is needed. Using Monte Carlo techniques and orbit calculations we
now estimate the probabilities for different kinds of three-body orbits, and in doing
so, put our own existence on this planet in perspective.

Problems

Problem 11.1 If the hardening rate π Ra in Eq. (11.7) is lowered by a factor
of three, show that the time scale for the coalescence of supermassive binaries is
increased by more than a factor of two.

Problem 11.2 Show that the change in the kinetic energy of a gas cloud of mass
dm is

dE = −1

2
dmv2

0

[
(2m2/M − M/m2)2(1 − e)/(1 + e)

]
when the cloud collides with the binary member m2 at the apocentre of the binary
orbit and at the pericentre of the parabolic cloud orbit (Fig. 11.2). Under what
conditions does the term in square brackets equal 1?

Problem 11.3 Show that the change in the potential energy of a binary is

dV = − dm

1 + e

m

m2
v2

0

when a mass dm is added to its component at the apocentre of the orbit. Then show
using the result of the previous problem that the change in the binary binding energy
due to the cloud collision is

d|EB |
|EB | = dm

M

[(
−2m2/M +

(M
m2

)2

(1 − e) + 2
m

m2

)/
(1 + e)

]
.
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Under what conditions does the term in square brackets equal 1? Show that for
e = 0 and m2 � m1, da/a → 0, but for all other values da/a > 0.

Problem 11.4 Show that the angular momentum change in the binary–gas cloud
collision is

dL

L
=
√
M
m2

[√
2

1 − e
− 1

]
dm

M .

Problem 11.5 Use the result of Problem 11.3 to show that

da

a
=
[(

2
m2

M −
(M

m2

)2

(1 − e) − 2
m

m2

)/
(1 + e) + M

m2

]
dm

M .

Then calculate using Problem 11.4

d(e2) = 2(1 − e2)

×
[
−
√
M
m2

(√
2

1 − e
− 1

)
+
(

m2

M − 1

2

(M
m2

)2

(1 − e) − m

m2

)/
(1 + e)

+
(

1 + m

m2

)M
m2

]
dm

M .

If m2/M = 1 (large binary mass ratio), what is the largest value of e which gives
d(e2) ≥ 0? If it is assumed that da/a = 0, what is the maximum eccentricity that
the binary can have due to accretion? Assume (1) that the binary component masses
have become equal, (2) that they are very unequal.

Problem 11.6 Calculate the rate of double escapes of black holes per giant ellip-
tical galaxy when the formation of loss cones is neglected.

Problem 11.7 Calculate the probability of direct capture from the Oort Cloud to
a Halley type orbit via a close encounter with Saturn. What is the corresponding
probability by random walk?
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